Assessing the Potential of the Future EnMAP Mission for the Multiseasonal Retrieval of Biophysical Land Surface Parameters

Dipl. Geogr. Matthias Locherer
Outline

Objective in the EnMAP-Context

Multiseasonal Campaign 2012

| In Situ Measurements |
| Airborne Spectroscopy |

Biophysical Parameter Estimation

| Physically-based Modelling |
| Model Inversion |
| Selection Criteria |
| Validation |
| Application of LUT to Airborne Data |
| Crop Analysis |

Transfer to EnMAP Scale

| Spatial Adaption |
| Spectral Adaption |
| Application of LUT to EnMAP Data |

Is it possible to gain multiseasonal data about biophysical land surface parameters from hyperspectral image data without the need of in situ data?
Test Site – Neusling, Lower Bavaria (Size: 3x4 km)

- 6 data acquisitions
 - Apr 28\(^{th}\) (AVIS-3)
 - May 8\(^{th}\) (HySpex)
 - May 25\(^{th}\) (AVIS-3)
 - Jun 16\(^{th}\) (AVIS-3)
 - Aug 12\(^{th}\) (HySpex)
 - Sep 8\(^{th}\) (AVIS-3)

- > 500 in-situ measurements
 - Leaf Area Index (LAI)
 - Leaf Chlorophyll Content (LCC)
 - Soil moisture
 - Plant height
 - phenology
Multiseasonal Campaign 2012
Airborne Spectroscopy

AVIS-3 | Apr 28th

HySpex | May 8th

AVIS-3 | May 25th

AVIS-3 | Jun 16th

HySpex | Aug 12th

AVIS-3 | Sep 8th

Resolution: 4m
Biophysical Parameter Estimation
Physically-based Modelling

- Chlorophyll Content
- Carotenoid Content
- Equivalent Water Thickness
- Dry Matter Content
- Leaf Structure Parameter

PROSPECT5 ➔ PROSAIL ➔ 4SAIL

Reflectance

Leaf Area Index [m m⁻²]

Wavelength [nm]

Average Leaf Angle
Leaf Area Index
Hot Spot
Solar Zenith Angle
Observer Zenith Angle
Observer Azimuth Angle
Soil Coefficient
Diffuse / Direct Radiation
Biophysical Parameter Estimation

Model Inversion

1. Step: Construction of a Look-Up Table Library

- PROSAIL Forward simulation

- 100,000 parameter settings + appropriate spectra

- 209 Zenith & Azimuth settings
 - Zenith 5°-steps
 - Azimuth 10°-steps

- 4 Solar Zenith settings
 - 4 different SZA in 6 flights

Total Amount of Spectra in LUT: 83,600,000

2. Step: Inversion Sequence

- Control of solar zenith setting

- Start at first pixel and control of zenith & azimuth angle

- Selection of corresponding LUT

- Multiplication of measured spectrum 100,000 times

- Application of curve fitting and identification of best match(es)

Criteria?
Biophysical Parameter Estimation
Selection Criteria

How to find the best fit?

A) Band selection
B) Selection of a cost function

- Multispectral: selective choice of bands
- Hyperspectral: continuous spectrum

Root Mean Square Error

\[RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (V_{est}^i - V_{obs}^i)^2} \]

Nash-Sutcliffe Efficiency

\[NSE = 1 - \frac{\sum_{i=1}^{n} (V_{obs}^i - V_{est}^i)^2}{\sum_{i=1}^{n} (V_{obs}^i - \bar{V}_{obs})^2} \]

Laplace Distribution

\[LP = \sum_{i=1}^{n} |V_{obs}^i - V_{est}^i| \]

Geman & McClure Function

\[GM = \sum_{i=1}^{n} \frac{(V_{obs}^i - V_{est}^i)^2}{1 + (V_{obs}^i - V_{est}^i)^2} \]
Bioophysical Parameter Estimation
Selection Criteria

How to find the best fit?

- A) Band selection
- B) Selection of a cost function
- C) Averaging a defined number of best fits
- D) Averaging method

Ill-posed problem – multiple solutions possible?

PROSAIL Input Parameters

<table>
<thead>
<tr>
<th>SETTING</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll</td>
<td>21.1</td>
<td>29.9</td>
</tr>
<tr>
<td>Carotenoid</td>
<td>10.9</td>
<td>13.3</td>
</tr>
<tr>
<td>Brown Pigment</td>
<td>0.058</td>
<td>0.115</td>
</tr>
<tr>
<td>EWT</td>
<td>0.020</td>
<td>0.029</td>
</tr>
<tr>
<td>Leaf Mass</td>
<td>0.009</td>
<td>0.004</td>
</tr>
<tr>
<td>Structure</td>
<td>1.03</td>
<td>2.20</td>
</tr>
<tr>
<td>Leaf Angle</td>
<td>66.3</td>
<td>57.7</td>
</tr>
<tr>
<td>LAI</td>
<td>6.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Hot Spot</td>
<td>0.67</td>
<td>0.02</td>
</tr>
<tr>
<td>Solar Zenith Angle</td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Obs. Zenith Angle</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Obs. Azimuth Angle</td>
<td>42.0</td>
<td>42.0</td>
</tr>
<tr>
<td>Soil</td>
<td>0.687</td>
<td>0.345</td>
</tr>
</tbody>
</table>
Biophysical Parameter Estimation
Selection Criteria

How to find the best fit?

A) Band selection
B) Selection of a cost function
C) Averaging a defined number of best fits
D) Averaging method
E) Adding noise to the LUT data

- Randomly generated
- Gaussian distributed
- Variance (σ^2) of that Gaussian distribution corresponds to a defined percentage of reflectance
- Different modes are possible:
 - Additive noise
 - Multiplicative noise
 - Negative multiplicative noise
 - Combined noise
 - Negative combined noise

Model vs. reality – how realistic are the simulated spectra?

Negative multiplicative Noise
How to find the best combination of inversion criteria?

Answer: Calculate All!

- 4 cost functions
- 2 averaging methods
- 5 types of noise
- 21 noise percentages (depending on noise type):
 Min = 0%, Max = 20%, Step Range = 1%
- 21 numbers of considered best fits:
 Min = 1, Max = 1000, Step Range = 50

Cost function: Laplace
Averaging method: median
Noise Type: negative multiplicative

17640 combinations
Biophysical Parameter Estimation

Validation

\[V_{est}^i = mV_{obs}^i + b \]

Problem: NSE (as well as RMSE, RRMSE, \(R^2 \)) are potentially high, even if slope (\(m \)) and intercept (\(b \)) are worse

\(\Rightarrow \) Definition of a threshold for slope (\(0.75 > m < 1.25 \)) and normalized intercept (\(b < 1.0 \))
Biophysical Parameter Estimation

Validation

Cost Function: \(\text{RMSE} \mid \text{NSE} \mid \text{LaPlace} \mid \text{Geman & McClure} \)
Averaging Method: \(\text{mean} \mid \text{median} \)
Number of fits: \(550 \mid 100,000 \)
Noise: \(\text{additive} \mid \text{multiplicative} \mid \text{neg. multiplicative} \mid \text{combined} \mid \text{neg. combined} \)
Noise (\(\sigma^2 \)): \(0.06 \)

\[R^2 = 0.66 \]
\[\text{RMSE} = 0.61 \]
\[\text{RRMSE} = 0.17 \]
\[\text{NSE} = 0.65 \]
\[0.75x + 0.95 \]
Biophysical Parameter Estimation
Application to Airborne Data

LAI (m² m⁻²)

0.0 5.5
Biophysical Parameter Estimation
Crop Analysis

[Diagram showing the growth cycle of various crops with data points for LAI and CCC from April 28th to September 8th]
Transfer to EnMAP Scale
Spatial Adaption

AVIS-3 | Apr 28th

HySpex | May 8th

AVIS-3 | May 25th

AVIS-3 | Jun 16th

HySpex | Aug 12th

AVIS-3 | Sep 8th

Resolution: 4m

-> EeteS ->

Resolution: 30m
Transfer to EnMAP Scale
Spectral Adaptation

AVIS-3 (CIR) – 4m

EnMAP – 30m
Transfer to EnMAP Scale
Application to EnMAP Data

LAI Estimation | AVIS-3 (spectral) | 30m

LAI Estimation | EnMAP (spectral) | 30m
Transfer to EnMAP Scale
Application to EnMAP Data

R² = 0.95
NSE = 0.95
RMSE 0.33
RRMSE 0.19
m | b = 1.00 | 0.11
Thank You For Your Attention.

The research presented here was financially supported through the space agency of the German Aerospace Center (DLR) through funding of the German Federal Ministry of Economics and Technology under the grant code 50 EE 0922.