
 

  

Chabrillat, S.; Guanter, L.; Kaufmann, H.; Foerster, S.; 

Beamish, A.; Brosinsky, A.; Wulf, H.; Asadzadeh, S.; 

Bochow, M.; Bohn N.; Boesche, N.; Bracher, A.; Brell, M.; 

Buddenbaum, H.; Cerra, D.; Fischer, S.; Hank, T.; Heiden, 

U.; Heim, B.; Heldens, W.; Hill, J.; Hollstein, A.; Hostert, P.; 

Krasemann, H.; LaPorta, L.; Leitão, P.J.; van der Linden, S.; 

Mauser, W.; Milewski, R.; Mottus, M.; Okujeni, A.; Oppelt, 

N.; Pinnel, N.; Roessner, S.; Röttgers, R.; Schneiderhan, T.; 

Schickling, A.; Soppa, M.; Staenz, K.; Segl, K. 

Environmental Mapping and 

Analysis Program (EnMAP) 

EnMAP Science Plan 



Recommended citation:  

Chabrillat, S; Guanter, L.; Kaufmann, H.; Foerster, S.; Beamish, A.; Brosinsky, 

A.; Wulf, H.; Asadzadeh, S.; Bochow, M.; Bohn N.; Boesche, N.; Bracher, A.; Brell, 

M.; Buddenbaum, Cerra, D.; H.; Fischer, S.; Hank, T.; Heiden, U.; Heim, B.; 

Heldens, W.; Hill, J.; Hollstein, A.; Hostert, P.; Krasemann, H.; LaPorta, L.; Leitão, 

P.J.; van der Linden, S.; Mauser, W.; Milewski, R.; Mottus, M.; Okujeni, A.; Oppelt, 

N.; Pinnel, N.; Roessner, S.; Röttgers, R.; Schneiderhan, T.; Schickling, A.; 

Soppa, M.; Staenz, K.; Segl, K. (2022) EnMAP Science Plan. EnMAP Technical 

Report, GFZ Data Services. 

DOI: http://doi.org/10.48440/enmap.2022.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Imprint 

EnMAP Consortium 

GFZ Data Services 

 

Telegrafenberg 

D-14473 Potsdam 

Published in Potsdam, Germany 

October 2022 

http://doi.org/10.48440/enmap.2022.001 

 

http://doi.org/10.48440/enmap.2022.001


 

Scientific Principal Investigator 

Sabine Chabrillat (GFZ German Research Centre for Geosciences, Leibniz University Hannover) 

supported by the EnMAP Science Advisory Group (EnSAG) 

 

Funding 

The core funding of the mission is provided by the German Space Agency at DLR with resources of 

the German Ministry for Economic Affairs and Climate Action and with contributions from the 

German Aerospace Center (DLR), OHB System AG and GFZ. 

 

 

 

www.enmap.org 

 

Science Plan authors 

S. Chabrillat (1,2), L. Guanter (1,3), H. Kaufmann (1), S. Foerster (1), A. Beamish (1), A. Brosinsky 

(1), H. Wulf (1), S. Asadzadeh (1), M. Bochow (1), N. Bohn (1), N. Boesche (1), A. Bracher (4,5), M. 

Brell (1), H. Buddenbaum (6), D. Cerra (7), S. Fischer (8), T. Hank (9), U. Heiden (7), B. Heim (10), 

W. Heldens (7), J. Hill (6), A. Hollstein (1), P. Hostert (11), H. Krasemann (12), L. LaPorta (8), P.J. 

Leitão (11), S. van der Linden (11,13), W. Mauser (9),  R. Milewski (1), M. Mottus (14), A. Okujeni 

(11), N. Oppelt (15), N. Pinnel (7), S. Roessner (1), R. Röttgers (12), A. Schickling (8), T. 

Schneiderhan (7), M. Soppa (4), K. Staenz (16), K. Segl (1) 

Affiliation at the time of contribution to the Science Plan: 

(1) Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ) 

(2) Leibniz University Hannover, Germany 

(3) Universitat Politècnica de València, Spain 

(4) Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany 

(5) University Bremen, Germany 

(6) University Trier, Germany 

(7) German Aerospace Centre (DLR), Oberpfaffenhofen, Germany 

(8) German Space Agency at DLR, Bonn, Germany 



(9) Ludwig-Maximilian-Universität München (LMU), Germany 

(10) Alfred Wegener Institute for Polar and Marine Research - Research Unit Potsdam (AWI), 

Germany 

(11) Humboldt-Universität zu Berlin, Germany 

(12) Helmholtz-Centre Hereon, Geesthacht, Germany 

(13) University Greifswald, Germany 

(14) VTT Technical Research Centre of Finland, Finland 

(15) Kiel University, Germany 

(16) University of Lethbridge, Canada 

  



Contents 
Preface .................................................................................................................................................... 1 

1 Introduction .......................................................................................................................................... 2 

1.1 Principles of imaging spectroscopy .............................................................................................. 2 

1.2 Current scenario in imaging spectroscopy and EnMAP ............................................................... 5 

1.3 EnMAP mission objectives ........................................................................................................... 6 

1.4 Overarching research themes for EnMAP .................................................................................... 7 

1.5 Impact on international programs ................................................................................................. 8 

2 EnMAP system and data products ..................................................................................................... 10 

2.1 Technical parameters and observational requirements ............................................................... 10 

2.2 Data products and access ............................................................................................................ 11 

2.3 Sensor calibration and product validation ................................................................................... 13 

2.4 Synergies of EnMAP with other Earth observation missions ..................................................... 14 

3 Main application fields for EnMAP ................................................................................................... 16 

3.1 Vegetation ................................................................................................................................... 16 

3.1.1 Natural ecosystems and ecological gradients ....................................................................... 16 

3.1.2 Forests .................................................................................................................................. 19 

3.1.3 Agricultural lands ................................................................................................................. 21 

3.2 Geology and soils ........................................................................................................................ 25 

3.2.1 Geology and exploration ...................................................................................................... 25 

3.2.2 Digital soil mapping ............................................................................................................. 27 

3.3 Coastal and inland waters ........................................................................................................... 29 

3.3.1 Coral Reefs ........................................................................................................................... 30 

3.4 Cryosphere .................................................................................................................................. 31 

3.4.1 Permafrost and Vegetation ................................................................................................... 32 

3.4.2 Snow & Ice .......................................................................................................................... 33 

3.5 Urban areas ................................................................................................................................. 36 

3.6 Atmosphere ................................................................................................................................. 38 

3.7 Hazards and Risks ....................................................................................................................... 39 

3.7.1 Landslides ............................................................................................................................ 39 

3.7.2 Swelling soils ....................................................................................................................... 40 

3.7.3 Floods ................................................................................................................................... 40 

3.7.4 Droughts ............................................................................................................................... 40 

3.7.5 Volcanoes ............................................................................................................................. 40 

3.7.6 Land degradation and soil erosion ....................................................................................... 40 

3.7.7 Oil spills ............................................................................................................................... 41 

3.7.8 Marine litter ......................................................................................................................... 41 

3.7.9 Illegal waste dumping .......................................................................................................... 42 

3.7.10 Industrial and mine waste and environmental rehabilitation ............................................. 42 

4 Scientific exploitation strategy........................................................................................................... 45 

4.1 Information and training ............................................................................................................. 45 

4.2 HYPERedu online learning initiative ......................................................................................... 46 

4.3 EnMAP-Box ............................................................................................................................... 47 

4.4 EnMAP preparatory flight campaigns and in situ data ............................................................... 48 

References ............................................................................................................................................. 50 

List of abbreviations ............................................................................................................................. 84 

Acknowledgements ............................................................................................................................... 88 
 



Preface 

EnMAP Technical Reports: EnMAP Science Plan, doi:10.48440/enmap.2022.001 1 
 

Preface 
 

The scope of the Science Plan is to describe the scientific background, applications, and activities of 

the Environmental Mapping and Analysis Program (EnMAP) imaging spectroscopy mission. Primarily, 

this document addresses scientists and funding institutions, but it may also be of interest to 

environmental stakeholders and governmental agencies. It is designed to be a living document that will 

be updated throughout the entire mission lifetime.  

Chapter 1 provides a brief overview of the principles and current state of imaging spectroscopy. This is 

followed by an introduction to the EnMAP mission, including its objectives and impact on international 

programs as well as major environmental and societal challenges. Chapter 2 describes the EnMAP 

system together with data products and access, calibration/validation, and synergies with other 

missions. Chapter 3 gives an overview of the major fields of application such as vegetation and forests, 

geology and soils, coastal and inland waters, cryosphere, urban areas, atmosphere and hazards. Finally, 

Chapter 4 outlines the scientific exploitation strategy, which includes the strategy for community 

building and training, preparatory flight campaigns and software developments. 

A list of abbreviations is provided in the annex to this document and an extended glossary of terms and 

abbreviations is available on the EnMAP website. 
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1 Introduction  

1.1 Principles of imaging spectroscopy 

Surface materials such as vegetation, soil, and rock can be differentiated and characterized based on 

their so-called spectral signatures, i.e., diagnostic absorption and reflection characteristics over the 

electromagnetic spectrum. Because every material is formed by chemical bonds, their harmonics and 

overtones of vibrational electronic transitions result in characteristic spectral absorption features that 

can be detected in narrow wavelength intervals. Some of the most significant absorption features occur 

between wavelengths of 400 nm and 2500 nm, where reflected solar radiation dominates the natural 

electromagnetic spectrum (Figure 1). These absorption characteristics can vary in their spectral depth, 

width, and location and, therefore, serve as diagnostic indicators enabling characterization of vegetation 

condition (e.g., Knipling, 1970) detection of water constituents (Lee et al., 1999) or identification of 

mineral assemblages (e.g., Hunt and Salisbury, 1970). 

  

Fig. 1: Solar radiation spectrum of extraterrestrial radiation (Top of Atmosphere) and global radiation (Sea level, 

composed of incoming, diffuse, and reflected radiation) with major atmospheric absorption bands. Irradiance data 

are derived from the American Society for Testing and Materials (ASTMs) Terrestrial Reference Spectra 

(http://rredc.nrel.gov/solar/spectra/am1.5/). 

 

Imaging spectroscopy, also known as hyperspectral imaging, is defined as a passive remote sensing 

technology that acquires simultaneous images in many spectrally contiguous, narrow bands so that for 

each pixel a reflectance spectrum can be derived (Goetz et al., 1985; Schaepman, 2007). Common 

biogeochemical applications of hyperspectral remote sensing include ecosystem processes, surface 

mineralogy, water quality, soil type and erosion, vegetation type and condition, canopy chemistry, and 

snow and ice properties, but it is also widely used in other disciplines such as medicine and 

manufacturing. 

Ecosystem studies focus on the spectroscopic detection and identification of plant composition, 

phenology, and health, as well as invasive species to provide information about ecosystem conditions 

and environmental stress (Asner et al., 2008; Schmidtlein and Sassin, 2004; Ustin et al., 2004). In the 

http://rredc.nrel.gov/solar/spectra/am1.5/
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past, most research has been focused on the spectral properties of leaves and canopies, providing 

estimates of (forest) species, foliar chemistry, biomass and carbon (Goodenough et al., 2012). In 

general, the spectral characteristics of vegetation exhibit strong pigment absorptions in the visible (VIS: 

400 nm to 700 nm) portion of the spectrum (Figure 2). The near infrared (NIR: 700 nm to 1400 nm) is 

marked by a steep increase of reflectance that is related to biomass, state and type of cellular 

arrangement, density, geometry and water content of the vegetation canopy. A shift of the "red edge" 

between 680 nm and 780 nm to shorter wavelengths is related to a decrease in chlorophyll, which in 

turn can be an indication of heavy metal, water or nutrient stress. Senescing leaves are also characterized 

by a decrease in chlorophyll, followed by losses of other pigments and leaf water content (Ustin et al., 

2004). The biochemical content of leaves and canopies, including nitrogen-containing compounds and 

lignin, absorb radiation at fundamental stretching frequencies, generally in the NIR and shortwave-

infrared (SWIR: 1400 nm to 2500 nm) regions. In general, stress and aging increase reflectance in the 

VIS and SWIR and decrease reflectance in the NIR (Ustin et al., 2004). Consequently, imaging 

spectroscopy is highly suitable to assess vegetation condition and to distinguish between vegetation 

species. 

 

 

Fig. 2: Reflectance spectra of selected Earth’s surface components. Reflectance data are derived from the USGS 

Digital Spectral Library (http://speclab.cr.usgs.gov/spectral.lib06/). The laboratory measurements represent 

samples of an oak leaf from Colorado (leaf), Aventurine quartz from India (rock), montmorillonite and illite from 

Virginia (soil), seawater from the Pacific Ocean (water), fresh snow from Colorado (snow), and black road asphalt 

from Colorado (urban). 

 

For geological applications, imaging spectroscopy is used to map surface mineralogy and lithology as 

well as quantify rock and soil chemistry based on spectral absorption features. The spectral reflectance 

of minerals is dominant in the visible near-infrared (VNIR) wavelength range (400 nm to 1400 nm) due 

to the presence or absence of transition metal ions (e.g., Fe, Cr, Co, Ni) resulting in absorption features 

due to electronic processes. The presence of water, hydroxyl, carbonate, and sulfate determine 

absorption features in the SWIR region due to vibrational processes. These phyllosilicates, sorosilicates, 

inosilicates, oxides, hydroxides, sulfates and carbonates are widespread components of the Earth’s 

surface. The absorption band depth, or the amount of light scattered and absorbed by a mineral is 
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dependent on grain or particle size (van der Meer et al., 2012). Based on the relative absorption depth, 

for example, kaolinite and organic carbon content can be derived with an accuracy of about 2% by 

weight (Krueger et al., 1998). 

Soils are dynamic environmental components of extremely variable physical and chemical composition 

(Ben-Dor et al., 1999) and are essential for ecosystem functioning. Soils comprise a major sink for 

biospheric carbon and organic matter in the topsoil, the proportions of which provide a good indication 

of soil quality, erosion, and dominant physical processes (Ustin et al., 2004). Since the major 

constituents of soil minerals do not exhibit absorption features in the VNIR and SWIR range (Hunt, 

1977), their spectral reflectance characteristics are mainly influenced by organic matter content, clay 

mineral composition, iron-oxide content, moisture content, salinity, texture and surface roughness. 

Typically, soils have broad, shallow absorption features at wavelengths between 400 nm and 2500 nm 

that are related to iron oxide and organic matter (Figure 2). In general, reflectance decreases with 

increasing organic matter and/or soil moisture content. Increases in particle size also cause a decrease 

in overall reflectance. Even small amounts of iron oxides can alter VNIR spectral reflectance 

significantly, causing broad absorption features particularly around 400 nm, 700 nm and 870 nm (Ben-

Dor et al., 1999). In contrast, several clay minerals (e.g., montmorillonite, kaolinite, illite, smectite) and 

carbonates display distinctive narrow-band absorption features in the SWIR range between 2000 nm 

and 2500 nm (Ustin et al., 2004). Studies on soil properties and imaging spectroscopy have focused on 

soil degradation, genesis and formation, contamination, classification and mapping, as well as on soil 

water content and swelling soils (Ben-Dor et al., 2009). 

Imaging spectroscopy has been widely used to investigate oceans, coastal and inland waters, which are 

characterized by an overall high absorption of radiant energy compared to land surfaces (Figure 2). 

Sunlight that reaches the water and penetrates is attenuated by water molecules and other optically 

active substances that absorb and scatter light. The type and concentration of these substances determine 

the spectrum and intensity of light in the water. A fraction of this light is scattered out of the water, 

interacting once again with the atmosphere and travels back to the satellite sensor. This backscattered 

signal can be used to measure the optical constituents of water, such as pigments (e.g., chlorophyll), a 

wide range of phytoplanktonic species, dissolved organic matters, and suspended non-algal particles 

(e.g., minerogenic sediments). Aquatic environments are a complex mixture of optically dissolved and 

particulate material. Coastal and inland waters have high optical variability; ranging from very clear 

and shallow to highly turbid or hypertrophic waters (Giardino et al., 2019). 

Snow cover and its change of state dominate local to regional climate and hydrological regimes in 

mountainous and Polar Regions. Modeling snowmelt distribution and its impact can be facilitated by 

hyperspectral remote sensing through the retrieval of snow properties, such as snow-covered area, 

albedo, grain size, very near surface liquid water, and impurities (Dozier and Painter, 2004). Among 

natural materials at the Earth’s surface, snow has a huge range of spectral reflectance values depending 

on its physical characteristics, primarily the grain size but also dust or soot content, organic substances 

such as algae, and liquid water (Dozier et al., 2009). Clean, deep snow is highly reflective in the VIS 

spectrum, whereas reflectance in the NIR and SWIR wavelengths shows a general decrease but varies 

considerably depending primarily on grain size (Figure 2). 

Urban areas are characterized by a wide range of spectrally distinct surface materials, the spectral 

signatures of which are determined by chemical composition (Heiden et al., 2012). For example, roofing 

tiles and polyethylene exhibit pronounced absorption features and high-spectral variation, whereas other 

urban surfaces, such as concrete and asphalt, are characterized by low reflectance and low spectral 

variation. Spaceborne imaging spectroscopy data will offer new possibilities for mapping urban 

environments at improved accuracy and higher thematic detail, due to its high spectral information 

content (van der Linden et al., 2019a). Heldens et al., (2011) identified the following current major 
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topics regarding urban applications: urban development and planning, urban growth assessment, risk 

and vulnerability assessment, and urban climate. 

EnMAP has the capability to detect individual absorption features in the spectra of many solid, liquid, 

and gaseous materials. Actual detection depends on the instrument’s spectral coverage, spectral 

resolution, signal-to-noise ratio, the abundance of the material, and the strength of the material’s 

absorption features in the measured wavelength region. The molecular spectral absorption and 

scattering properties of materials form the basis for the identification and determination of the 

abundance of surface and atmospheric constituents. Accordingly, research and development efforts 

within the EnMAP mission employ these fundamental spectral characteristics as a basis for the 

extraction of information from spaceborne hyperspectral data. 

1.2 Current scenario in imaging spectroscopy and EnMAP 

More than three decades of effort have been devoted to the development of instruments capable of 

acquiring contiguous spectra in different wavelength regions, facilitating precise and quantitative 

analysis of terrestrial and aquatic ecosystems. These imaging spectrometers have primarily been flown 

on aircrafts for experimental and commercial purposes, e.g., AIS, (Vane et al., 1983), FLI and CASI 

(Gower et al., 1992), AVIRIS (Green et al., 1998; Vane et al., 1993), GER/DAIS (Collins and Chang, 

1990), SFSI (Neville and Powell, 1992), Hydice (Rickard et al., 1993), MIVIS (Bianchi et al., 1994), 

HyMap (Cocks et al., 1998), APEX (Itten et al., 2008; Schaepman et al., 2015, 2004), AVIS (Oppelt 

and Mauser, 2007), AISA (www.spectralcameras.com/aisa), HySpex (www.hyspex.no), and Hyperspec 

(www.headwallphotonics.com) (Figure 3). However, data acquisition from an aircraft platform cannot 

provide a synoptic view of large areas and repeated acquisitions are costly. For a more complete 

overview of airborne imaging spectroscopy sensors and their history refer to Schaepman et al., (2009). 

 

 

Fig. 3: Overview of the spectral and spatial resolution of airborne sensors and spaceborne hyperspectral missions. 

 

Until recently, most operational optical satellite sensors have been multispectral instruments acquiring 

discrete bands in the VNIR and in some cases the SWIR and thermal infrared (TIR) regions of the 

spectrum (e.g., Landsat, ASTER). Panchromatic sensors only provide spatial information, while 

http://www.spectralcameras.com/aisa
http://www.hyspex.no/
http://www.headwallphotonics.com/
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multispectral instruments such as Sentinel 2, Landsat, SPOT, IRS, CBERS, ASTER, and ALI augment 

the spatial data with qualitative information about the surface materials. With the successful launches 

of the Chinese Gaofen-5 in 2018, the Italian Space Agency’s (ASI) PRISMA satellite in 2019 

(PRecursore IperSpettrale della Missione Operative; Pignatti et al., 2013) and the German Space 

Agency’s (DLR) EnMAP in 2022 the availability of spaceborne hyperspectral data has greatly increased 

in recent years.  

In addition to these satellites, several imaging spectrometers have recently been installed on the 

International Space Station (ISS) including DESIS (DLR), HISUI (JAXA, Iwasaki et al., 2011) and 

EMIT (NASA). Past missions that also contribute to available spaceborne hyperspectral data include 

NASA’s Hyperion (2000 - 2017; Pearlman et al., 2003; Ungar et al., 2003), NASA’s HICO (2009 - 

2015; Corson et al., 2008; Lucke et al., 2011), and European Space Agency’s (ESA) CHRIS (since 

2001; Barnsley et al., 2004) (Figure 3). Considering that Hyperion and CHRIS were designed for a 1-

year lifetime, they have provided exceptional results. However, CHRIS and HICO were limited to the 

VNIR region, while Hyperion was characterized by a low signal-to-noise ratio. Both these factors limit 

feature detection capabilities. Therefore, past spaceborne sensors provide only limited information on 

biochemical and geochemical parameters, which are required for detailed environmental studies. 

Future, next generation imaging spectroscopy missions include ESA’s CHIME mission (Copernicus 

Hyperspectral Imaging Mission; Nieke and Rast, 2018), NASA’s SBG missions (Surface Biology and 

Geology) and PACE (Plankton, Aerosol, Cloud, ocean Ecosystem), and Centre National d’Études 

Spatiales’s HYPXIM (Michel et al., 2011).  

EnMAP is a German hyperspectral satellite mission that aims to monitor and characterize the Earth’s 

environment on a global scale. EnMAP serves to measure and model key dynamic processes of the 

Earth’s ecosystems by extracting geochemical, biochemical and biophysical parameters to provide 

information on the status and evolution of various terrestrial and aquatic ecosystems. An overview of 

the EnMAP mission is provided in Guanter et al., (2015).  EnMAP provides unique data needed to 

address major environmental issues related to human activity and climate change. The mission’s main 

objective is to study and decipher coupled environmental processes and to assist and promote the 

sustainable management of the Earth’s resources. Despite being a primarily scientific mission, EnMAP 

has a clear potential to evolve towards an operational service. 

The satellite mission is managed by the German Space Agency at DLR Bonn with core funding from 

the Federal Ministry of Economic Affairs and Climate Action. The German Centre for Geosciences 

(GFZ) in Potsdam is responsible for the scientific management of the mission and is supported by a 

Science Advisory Group (EnSAG). OHB SE in Bremen and Oberpfaffenhofen was responsible for 

developing the EnMAP instrument and building the associated satellite platform. The ground segment 

is operated by DLR. Specifically the satellite operation is managed by the German Space Operations 

Center and data processing and provision is done by the German Remote Sensing Data Center and the 

DLR Remote Sensing Technology Institute. 

1.3 EnMAP mission objectives 

The main scientific goal of the hyperspectral EnMAP mission is to study environmental changes, 

investigate ecosystem responses to human activities and monitor the management of natural resources. 

By measuring diagnostic parameters of environmental change, ecosystem stability, and sustainable 

resource use, the EnMAP mission aims to provide critical information to improve our understanding 

and management of the Earth System. 

The primary mission objectives are to: 
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• provide high-quality, calibrated hyperspectral data for advanced remote sensing analyses; 

• foster and develop novel methodologies that improve the accuracy of currently available remote 

sensing-derived information and provide advanced science-driven information products; 

• obtain diagnostic geochemical, biochemical and biophysical variables that describe the status and 

dynamics of various ecosystems to improve our understanding of complex environmental processes; 

• provide information products that can serve as input for ecosystem models; 

• contribute significantly to environmental research studies, particularly in the fields of ecosystem 

functioning, natural resource management, natural hazards and Earth system modeling; and 

• develop new concepts and techniques for data extraction and fusion to achieve synergies with other 

sensors. 

EnMAP significantly increases the availability of hyperspectral data. To understand and fully exploit 

the information provided by EnMAP, novel techniques need to be developed that utilize its regional 

coverage on a global scale. EnMAP data provide a unique opportunity to adapt and extrapolate existing 

hyperspectral data analysis approaches derived from laboratory, field, and airborne measurements. 

Integration of these data in regional ecosystem models will complement, enhance, and expand on local 

case study findings. Improved regional scale science on the state and change of ecosystems is a 

prerequisite for improved global ecosystem models. Such upscaling studies require a consolidation and 

generalization of the derived ecosystem parameters and synergistic analyses with other spaceborne 

imagery like ESA’s Copernicus satellites. Due to the 30° across track off-nadir pointing capability, 

EnMAP is suited for repeat acquisitions of multiple key target sites with a maximum revisit time of four 

days. This allows EnMAP to repeatedly observe a globally distributed network of key target sites during 

its five years of mission operation.  

1.4 Overarching research themes for EnMAP 

The repeat observations of EnMAP in combination with an advanced spectral range and resolution will 

provide new insights into many interrelated fields of environmental science and will open new horizons 

in ecosystem research as well as resource and disaster management. EnMAP will make significant 

contributions to the following scientific questions:  

Climate Change Impact and Interventions 

• How does climate change affect the functioning, composition and phenology of terrestrial and 

aquatic ecosystems? 

• What interventions can effectively combat climate change and how can their implementation be 

monitored? 

Land Cover Changes and Surface Processes 

• What is the spatial distribution and extent of land degradation and land use/land cover change? 

• What processes drive land degradation and how efficient are interventions? 

• How does land degradation and land use/land cover change impact food security and environmental 

sustainability? 

Biodiversity and Ecosystem Processes 

• How do ecosystems change in their composition, spatial distribution and health? 
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• To what extent does ecosystem change affect the loss of biodiversity and the migration of species? 

• How successful are measures to achieve ecosystem stability and to combat biodiversity loss? 

Water Availability and Quality 

• What areas are affected by water scarcity and poor water quality? 

• How do climate change and human activities reinforce water scarcity and water quality problems? 

Natural Resources 

• How can natural resources, such as mineral deposits, soils, energy sources and ground water sources, 

be explored and managed in a sustainable way? 

• What impact does industry, mining and agriculture have on natural resources? 

• What is the degree and extent of environmental damage from natural resource extraction and to what 

extent is the damage being restored? 

Hazard and Risk Assessment 

• What regions are most vulnerable to natural and man-made hazards? 

• In the case of a natural or man-made disaster, what areas are most affected? 

1.5 Impact on international programs 

The products and information generated from EnMAP data are of substantial interest for the scientific 

community, European and international organizations, and the general public. First and foremost, 

researchers need EnMAP data to improve their understanding of Earth surface processes and reduce 

uncertainties in associated ecosystem models. Scientific requirements for terrestrial and aquatic 

observations have long been articulated by the International Geosphere-Biosphere Program (IGBP), the 

Future Earth Coasts (FEC), the International Human Dimensions Program (IHDP), DIVERSITAS, the 

World Climate Research Program (WCRP), the Global Land Project (GLP), the Global Biodiversity 

Information Facility (GBIF), the Global Environment Outlook (GEO), the UN Agenda for Sustainable 

Development defining 17 Sustainable Development Goals (SDGs), the Committee on Earth 

Observation Satellites (CEOS) and others. The major new “Future Earth” alliance on Earth system 

research for global sustainability integrates and consolidates international expertise in environmental 

and social science under one umbrella and forms a programmatic and societal justification for Earth 

observation research and development. This is underlined by the welcoming of Future Earth as a 

participating organization in the Group on Earth Observations (GEO) in 2015. GEO aims at building 

the Global Earth Observation System of Systems (GEOSS) that will link global Earth observation 

resources contributed by organizations and countries within GEO across multiple Societal Benefit Areas 

(SBAs) to facilitate access to the data for better informed decision-making. The SBAs include 

biodiversity and ecosystem sustainability, disaster resilience, energy and mineral resources 

management, food security and sustainable agriculture, infrastructure and transportation management, 

public health surveillance, sustainable urban development, and water resources management (GEO, 

2015). 

Key international stakeholders with an interest in the scientific results of the EnMAP mission, include 

organizations that make up the United Nations System (e.g., UNEP, FAO, UNESCO and WMO) as 

well as global observing systems, such as the Global Climate Observing Systems (GCOS), Global 

Ocean Observing System (GOOS) and Global Terrestrial Observing System (GTOS). Furthermore, 

EnMAP data will be a valuable source of information needed for multilateral environmental 
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agreements, such as REDD+, UNFCCC, UNCCD, and CBD, as well as for key international entities, 

such as the Intergovernmental Panel on Climate Change (IPCC), the Intergovernmental Platform on 

Biodiversity & Ecosystem Services (IPBES) and the International Union for Conservation of Nature 

(IUCN). EnMAP data have already been requested by UNEP to contribute to their International 

Methane Emissions Observatory (IMEO). Within IMEO, EnMAP data will enable the detection of 

methane point sources from fossil fuel activities, which will be used to guide mitigation efforts (see 

Section 3.6). 

At the European Union level, the European Green Deal will greatly benefit from the detail of EnMAP 

data to monitor Earth surface processes and resources to meet its ambitious goals. In addition, several 

Commission directories (e.g., DG VI - Agriculture, DG VIII - Development, DG XI - Environment, 

DG XII - Transport, and DG XVI - Regional policy) require continuous remotely sensed surface 

observations so government agencies can set, monitor, and enforce their policy agendas. For example, 

specified biological, hydromorphological and physico-chemical parameters of water bodies must be 

monitored on a regular basis according to the EU Water Framework Directive (EU WFD). The EU 

WFD is working towards integrated watershed management for the European continent. The EU is also 

working towards the sustainable extraction of raw materials from exploration to post mine closure that 

align with defined Sustainable Development Goals (SDG). In addition, national and local authorities 

will need increasingly detailed information for implementing measures to combat desertification and 

plan alternative land use. The European Soil Protection Directive requires detailed mapping of topsoil 

properties to monitor the carbon cycle and soil health, soil erosion and degradation, as well as soil 

fertilization and agricultural practices (i.e., conservation agriculture and carbon farming). In view of 

these developments, EnMAP data products (e.g., soil condition, vegetation cover, change detection 

maps, degradation index maps) will be beneficial for decision makers. In particular, the European 

Copernicus program provides users with reliable and up-to-date information through a set of services 

related to environmental and security issues (European Commission, 2015)
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2 EnMAP system and data products 

2.1 Technical parameters and observational requirements 

The EnMAP satellite carries a push-broom type hyperspectral imager, that records reflected solar 

radiation from the Earth surface between 420 nm to 2450 nm in 246 contiguous bands. At the nominal 

start of the mission 224 of the 246 are provided as Bottom of Atmosphere (BOA) reflectance data 

product (L2A). The mean bandwidth is 6.5 nm the VNIR range and 10 nm in the SWIR range. Accurate 

radiometric and spectral responses are ensured by a reference signal-to-noise ratio (SNR) of ≥ 400:1 in 

the VNIR and ≥170:1 in the SWIR (based on an albedo of 30% and a solar zenith angle of 30°), a 

radiometric calibration accuracy of better than 5%, and a spectral calibration uncertainty of 0.5 nm in 

the VNIR and SWIR. 

The sensor is characterized by a ground sampling distance of 30 m (nadir at sea level) and provides a 

swath width of 30 km. EnMAP can record strip lengths between 30 km and 1000 km (subject to 

potential conflicts in the acquisition plan) with a capacity of 5000 km per day. The nominal target revisit 

time of 27 days can be reduced to 4 days by use of an across-track off-nadir pointing capability of ±30°. 

EnMAP has a sun-synchronous orbit (653 km altitude at 48°N, 97.96° inclination) with a local 

equatorial crossing time of 11:00 ± 00:18 hr. The satellite was successfully launched on April 1st, 2022, 

onboard a SpaceX Falcon 9 rocket from Cape Canaveral, Florida and has a designed lifetime of five 

years. A summary of the main mission and instrument specifications is given in Table 1. Further 

descriptions can be found in Guanter et al., (2015) and Kaufmann et al., (2015). 

 

Table 1: EnMAP mission and instrument specifications at the start of the nominal phase.  

Hyperspectral instrument 

Imaging principle Push-broom-prism 

Spectral range 

 

VNIR: 420 nm - 1000 nm 

SWIR: 900 nm - 2450 nm 

Mean spectral sampling distance 

 

VNIR: 6.5 nm 

SWIR: 10 nm 

Spectral oversampling 1.2 

SNR at reference radiance 

 

VNIR: > 400:1 at 495 nm (nadir looking, 30° solar zenith angle) 

SWIR: > 170:1 at 2200 nm (0.3 earth albedo) 

Spectral calibration accuracy VNIR: 0.5 nm 

SWIR: 1.0 nm 

Spectral stability 0.5 nm 

Radiometric calibration accuracy < 5 % 

Radiometric stability < 2.5 % 

Radiometric resolution 14-bit, dual gain in VNIR 

Sensitivity to polarization < 5 % 

Spectral smile/keystone effect maximum < 15 % / < 25 % of a pixel ( < 10 % / < 10 % for majority 

of pixels) 

Co-registration VNIR-SWIR < 30-40 % of a pixel (expected to reach <20%) 

Mission  

Ground sampling distance 30 m  



2 EnMAP system and data products  

EnMAP Technical Reports: EnMAP Science Plan, doi:10.2312/enmap.2016.006 11 

Swath width 30 km 

Swath length up to 1000 km/orbit and 5000 km/day 

Coverage Global in near-nadir mode (VZA ≤5°) 

Orbit Sun-synchronous,11:00 +/- 00:18 local time descending node 

Target revisit time 27 days (4 days with 30°across track pointing) 

Pointing accuracy (knowledge) 500 m (100 m) at sea level 

2.2 Data products and access 

The following EnMAP data products are delivered to the user community: Product Level 1B, 1C, and 

2A. The raw data and subsequent Level 0 products are not available to the user community (Figure 4). 

This section provides a short definition of these products. A more detailed description of the data 

products can be found in Guanter et al., (2015) and on the mission website.  

The Level 1B (L1B) product represents top-of-atmosphere radiance. The L1B processor corrects the 

hyperspectral image for known effects, e.g., radiometric non-uniformities, and converts the system 

corrected data to physical at-sensor radiance values based on the up-to-date radiometric calibration 

values. The L1B product is also annotated with auxiliary information for further processing, e.g., 

defective pixels mask and data quality. At the start of the nominal phase, the data cubes for the two 

spectrometers are independent, as they have not yet been co-registered.  

The Level 1C product represents spectral smile corrected and geocoded top-of-atmosphere radiance. 

This product is derived from the Level 1B product, which is subsequently geometrically corrected 

(orthorectified) and re-sampled to a specified grid. Smile is corrected by applying a simplified 

atmospheric correction, spectral resampling, and back transformation. The Level 1C processor creates 

orthoimages by direct geo-referencing, utilizing an adequate digital elevation model. The extraction of 

ground-control-points from existing reference images using image matching techniques serve to 

improve the line-of-sight vector and, therefore, to increase the geometric accuracy of the orthoimages. 

The Level 1C processor orthorectifies image tiles from the VNIR and SWIR instrument independently. 

The co-registration error is 0.3–0.4 pixels and is expected to reach less than 0.2 pixels. Further updates 

of the L1B and L1C processor are expected soon, which will further improve data quality with respect 

to striping artifacts and detector co-registration. 

Finally, the Level 2A processor will convert the Level 1C products to surface reflectance separately for 

land and water applications. The atmospheric correction involves generation of sun glint maps for water 

surfaces by specular reflection identification, haze and cirrus detection (and correction), aerosol optical 

thickness and columnar water vapor estimation, and retrieval of surface reflectance after adjacency and 

terrain correction. It is anticipated that most applications will use the Level 2A products (L2Aland, 

L2Awater or L2Acombined) for further analyses. Thanks to this operational approach, the end user will be 

provided with CEOS Analysis Ready Data for Land (CARD4L) compliant data products (Bachmann et 

al., 2021) including rich metadata and quality information, which can be readily integrated into analysis 

workflows and combined with data from other sensors.  

The EnMAP website (www.enmap.org) is the entry point for all users interested in the EnMAP mission, 

its objectives, status, data products and processing chains. Additionally, the website provides the 

requirements and conditions for the EnMAP data access and ongoing scientific program activities. 

Access to EnMAP data is provided using two different order options: 1) the user can request acquisitions 

through the EnMAP Instrument Planning portal (EIP; https://planning.enmap.org/). The EIP links to a 

set of functions for registered users that will support the international user community. This portal 

includes the Proposal Portal for proposal submission by all scientific users responding to an 

Announcement of Opportunity (AO) and the Observation Request Portal providing planning support of 
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observation requests and submission of future orders. 2) Data from the archive catalog can be ordered 

using the EOWEB® GeoPortal. All archived data have ISO (International Organization for 

Standardization) metadata sets and can be visualized using CSW (Catalogue Service for the Web) and 

WMS (Web Mapping Service) protocols standardized by the OGC (Open Geospatial Consortium). Due 

to the multiple processing options, each product is generated specifically for the order and delivered 

using SFTP (secure file transfer protocol). 

Acquisition requests should be submitted at least 24 hours before the scheduled acquisition to ensure 

the uplink. The final scheduling depends on factors such as available data storage, cloud probabilities 

(e.g., historical and predicted cloud coverage) and, if requested by the user, sun glint probability (this 

is relevant for water products only). L0 products will be in the archive within 24 h after completion of 

the downlink. L2A products will be processed and delivered within a maximum of 6 days for acquisition 

orders and 10 days for catalog orders. The user can choose the image formats BSQ, BIL BIP, JPEG2000 

and GeoTIFF, where the last two are compressed. The metadata is in Extensible Markup Language 

(XML) format and the product is accompanied by a PDF report. 

 

Fig. 4: The EnMAP data processing chain from the raw data to the geometrically and atmospherically corrected 

Level 2A product (reproduced from (Guanter et al., 2015) 

 

EnMAP is based on an open data policy and every user is in principle entitled to request acquisitions 

and download data, however there are different user categories to set acquisition priorities. After 

registration through the EIP, users are assigned roles before obtaining access to the data. Management 

of available satellite resources requires prioritization of observation requests. The purpose of assigning 

roles is to assign priorities to observation requests. The scientific category-1 user (Cat-1) has high 

priority and must submit a research proposal, which will undergo a technical evaluation. Category-2 

users (Cat-2) are commercial users and will be able to acquire new data without a proposal but will be 

granted a lower priority. The priorities for data requests in decreasing order are: 1) internal (high 

priority, e.g. calibration); 2) emergency Cat-2 (e.g. international charter on space and major disasters); 

3) scientific Cat-1 (high priority, science proposal); 4) scientific Cat-1 (standard priority, science 

proposal); 5) non-emergency Cat-2 (e.g. commercial users); and 6) internal (low priority, e.g. 

background mission to fill up or extend requests). Requests of the first two priorities are scheduled 
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regardless of their success concerning cloud probabilities or quota. Requests of the last two priorities 

are advised to take the revisit times into account when planning the acquisition time period in order to 

increase the probability that the scheduling meets their requirements. 

The EnMAP website (www.enmap.org) is the central entry point for all users interested in the EnMAP 

mission, its objectives, status, data products and processing chains. Additionally, this platform informs 

about the conditions and requirements for the EnMAP data access and the ongoing scientific program 

and activities. 

2.3 Sensor calibration and product validation 

To ensure high quality EnMAP data, a well-characterized primary sensor, on-board calibration 

facilities, and ongoing vicarious calibration measurements are prerequisites throughout the entire 

mission lifetime. The derived official data products also require independent validation using in 

situ/field measurements and scene/image processing techniques. 

The pre-flight sensor characterization was performed in the laboratory for the individual subsystems 

and the complete end-to-end sensor system. It includes spectral, radiometric, and geometric calibrations. 

The band centers, bandwidths, and spectral response profiles for each band of each pixel in the detector 

array have been derived by spectral measurement. The radiometric measurements encompass the 

detector array responsivity, linearity, uniformity, noise characterization, straylight, optics transmittance 

and characterization of the diffusor as well as calibration of reference spheres against standards to 

properly characterize instrument performance. The geometric measures include the total field-of-view, 

the view angle for each pixel and each band, and the modulation transfer function. After launch, in-

flight calibration was carried out using on-board calibration devices including 1) the solar full aperture 

diffuser for the absolute radiometric calibration using the sun as the known reference, 2) a main sphere 

for the relative radiometric calibration, 3) a small sphere for spectral characterization, 4) focal plane 

assembly LEDs for non-linearity calibration and 5) a shutter for dark current calibration. Additionally, 

residual signals caused by thermal emissions from the shutter mechanism are regularly determined by 

looking into deep space. Vicarious calibration experiments on demand complement the measurements. 

As the imaging spectrometer and the on-board calibration instrumentation age, there will be a growing 

need for periodic in-flight, vicarious and on-board calibrations. 

The quality of the official EnMAP data products is crucial for the usability and value of the data and 

the mission’s success. Therefore, the radiometric, spectral, reflectivity, geometric, and general 

uniformities of the three official EnMAP data products (L1B, L1C, and L2A) are validated intensively 

during the commissioning phase and the operational mission period. The external product validation 

activities are performed by the GFZ and EnSAG with support in situ end user validation teams. 

Validation activities are independent of the calibration and data quality control activities done by the 

Ground Segment (GS) at DLR Earth Observation Center (EOC) and German Space Observation Center 

(GSOC). The validation procedures and scenarios are described in the EnMAP Product Validation Plan 

(PVP). 

In situ and scene-based validation scenarios and algorithms derive characteristic error estimates for the 

final EnMAP Products (Brell et al., 2022, 2021): 

• L1B validation: absolute and relative radiometric uncertainty, spatially coherent artefacts (striping 

and dead pixel), signal-to-noise ratio (SNR), spectral parameters (e.g., SRF and smile), and spatial 

parameters (keystone and modulation transfer function). 

• L1C validation: geometric performance (absolute and relative spatial mis-registrations), detector co-

registration and band-to-band co-registration. 

http://www.enmap.org/
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• L2A validation: reflectance uncertainty and aerosol and water vapor contents. 

The in situ-based validations rely on in situ measurements from globally covered validation sites. 

Experienced international partners, extensive science-oriented field- and airborne campaigns, and 

selected core sites support the validation efforts with valuable in situ reference measurements. 

Established CAL/VAL sites and networks (e.g., CEOS, RadCalNet, AERONET, and HYPERNETS) 

supplement the respective validation scenarios. For stability- and cross-validation scenarios, Pseudo 

Invariant Calibration Sites (PICS) and data from other missions (e.g., PRISMA, EMIT, DESIS, 

Sentinel-2) are used. 

For scene-based validation scenarios, such as, e.g., striping, keystone, smile (Guanter et al., 2006), and 

absolute and relative spatial misregistration (Scheffler et al., 2017), suitable data products/images are 

sufficient. These validations are performed regularly with state-of-the-art image processing and 

specifically designed validation algorithms. 

Based on these comprehensive validation efforts, detailed information on the spatial, spectral and 

radiometric performance of the instrument is derived. Potential error sources can be traced back to the 

instrument and processing chain levels and can be incorporated into calibration and processing 

activities. All these combined calibration and validation efforts guarantee a high EnMAP data quality 

for the end-users. 

2.4 Synergies of EnMAP with other Earth observation missions 

While EnMAP was conceived as a stand-alone mission with scientific objectives driven by the user 

community, yet valuable synergies exist between EnMAP and optical and radar imagery. Synergy 

potential exists between EnMAP and Copernicus’s Sentinel missions (Berger et al., 2012). The 

Sentinels provide high quality data with global coverage in the optical and microwave domain in both 

high and medium spatial resolution. These missions serve the Copernicus program by providing 

continuous and global Earth observation from space on an operational basis.  

Sentinel-2 provides multispectral imagery in high spatial (10 m – 60 m) resolution and a moderate 

temporal (<5 days) and spectral (13 bands) resolution (Drusch et al., 2012). The global coverage of 

Sentinel-2 in a comparable spatial resolution to that of EnMAP (30 m) holds the synergistic potential 

to expand the advanced spectral regional information of EnMAP to a global scale. Sentinel-3 and similar 

medium-spatial-resolution optical missions operating concurrently with EnMAP, provide global data 

coverage in an almost daily temporal resolution (Donlon et al., 2012). Synergies between EnMAP and 

these missions include more frequent ecosystem observations allowing the characterization of surface 

processes with high temporal variations. 

In addition to optical sensors, Synthetic Aperture Radar (SAR) missions also provide complementary 

information to EnMAP data. For example, Sentinel-1 operationally provides C-band SAR-data of the 

Earth’s surface with spatial resolutions of 10 m – 20 m (Torres et al., 2012). This spatial 

resolution facilitates analysis and monitoring of physical parameters, such as surface roughness and soil 

moisture, which complements the biogeochemical focus of EnMAP data. Furthermore, digital elevation 

model (DEM) data derived from TerraSAR-X or Tandem-X using InSAR techniques can be used for 

data correction purposes, such as the removal of geometric distortion effects in mountainous terrain 

(Kokaly et al., 2013a). 

The high spectral resolution of EnMAP can be combined with the current and future panchromatic and 

multispectral satellite systems like IKONOS, QuickBird, WorldView series, RapidEye, and Pleiades, 

which are characterized by a high to very high spatial resolution. Such sensors offer additional options 

to improve object recognition, product validation, and temporal coverage. For example, the high 
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temporal and spatial resolution data provided by RapidEye (one day revisit time, 6.5 m ground sampling 

distance) can be combined with EnMAP to augment temporal coverage, which is suitable to monitor 

disturbance or infestations in agricultural crops and forests. 

For the development and utilization of data synergies, a thorough understanding of small-scale 

interactions between irradiation and complex 3D surface objects is required. Airborne data, especially 

in-flight fusion of hyperspectral and LiDAR data, provides expanded data dimensionality (X, Y, Z, λ) 

and very high spectral and spatial information to deepen the understanding of such processes (Asner et 

al., 2012; Brell et al., 2018, 2017). These data can serve as a small-scale link between EnMAP and other 

Earth observation missions. Especially the comparability and the transferability of derived surface 

parameters to larger scales can be refined and evaluated based on such airborne data.
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3 Main application fields for EnMAP 
 

Accurate, quantitative information on the state and evolution of terrestrial and aquatic ecosystems is 

needed to support resource management, conservation strategies, restoration measures, and ecosystem 

services. Hyperspectral image analysis can support a wide range of environmental applications from 

the assessment of vegetation status over mineral assemblages to water constituents and environmental 

hazards. EnSAG identified some of the most challenging environmental issues to which EnMAP can 

contribute (see section 1.4). Interdisciplinary approaches are required to address these issues as they are 

interconnected by multiple processes and interactions (Figure 5). Fluxes of energy, water, carbon and 

sediment affect multiple spheres through complex feedback mechanisms that can be directly and 

indirectly assessed with imaging spectroscopy. This chapter provides an overview of current areas of 

research and potential contributions of EnMAP data to the study of vegetation, geology and soils, 

coastal and inland waters, cryosphere, urban areas, atmosphere and hazards. 

 

 

Fig. 5: Major research themes and associated application areas for imaging spectroscopy. 

3.1 Vegetation 

3.1.1 Natural ecosystems and ecological gradients 

Natural or pristine ecosystems, defined as ecosystems largely untouched by human land use, 

unmanaged ecosystems or protected areas, are rare (Kareiva et al., 2007). Global environmental change 

impacts even the most remote areas of our planet. Characterizing and monitoring natural or close to 

natural vegetation in these ecosystems is essential to support sustainable human-environment systems 

and to deepen our understanding of indirect global impacts from local to global scales. 
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Unlike managed ecosystems, natural ecosystems are characterized by high heterogeneity, often with 

multiple ecological gradients and gradual transitions between different ecosystem types and conditions. 

Effective monitoring and characterization of natural ecosystems requires meso- to macro-scale data that 

is consistent and reproducible through space and time. This information can only be obtained by means 

of remote sensing (DeFries et al., 2005). EnMAP data will address these requirements by providing 

highly detailed spectral information at a 30 m spatial scale with regular revisit intervals (Asner et al., 

2005; Leitão et al., 2015). 

The application of in situ and airborne imaging spectroscopy data to derive taxonomic, biophysical, 

biochemical and phenological properties of heterogeneous vegetated surfaces has been ongoing for 

decades (Gamon et al., 2019; Thenkabail and Lyon, 2016; Verrelst et al., 2019, 2015). More recently, 

simulated and real satellite imaging spectroscopy data have been applied to questions of vegetation 

change and monitoring at a range of spatial scales providing new insights into vegetation traits and 

ecosystem functioning (Zhang et al., 2021). Vegetation remote sensing has recently undergone a 

paradigm shift to focus on quantifying and monitoring plant functional traits rather than biophysical 

parameters as they are increasingly recognized as crucial to understanding and predicting ecosystem 

adaptation to global change (Rocha et al., 2019; Van Cleemput et al., 2019; Zhang et al., 2021). Satellite 

hyperspectral remote sensing is key to describing the spatial and temporal variability of plant functional 

traits at scales relevant for comprehensive monitoring as well as Earth system and ecosystem modeling 

(Rogers et al., 2017; Zhang et al., 2021).  

Derivation of vegetation properties is achieved through accurate measurements of photosynthetic 

pigments and the cellular structure of individual plants and plant canopies captured by spectral 

reflectance across narrow wavelengths. These data are then used in a variety of retrieval methods falling 

broadly into three categories of physical, statistical, and hybrid modeling (Verrelst et al., 2019, 2015). 

Physical-based leaf and canopy radiative transfer models developed in agricultural settings are being 

used with greater frequency to address questions of ecosystem functioning in natural ecosystems (see 

Ali et al., 2016; Feilhauer et al., 2017; Kattenborn et al., 2017; Kennedy et al., 2020). Using RTMs in 

natural ecosystems requires complex model calibration due to the heterogeneous nature of vegetation 

structure and canopies. Schiefer et al., (2021) highlighted the sensitivity of trait retrieval by inverse 

RTMs to plant phenology highlighting the difficulty in producing accurate and transferable results in 

natural ecosystems. Advances in statistical and machine learning provide a set of methods that can 

couple qualitative and quantitative analyses without being affected by collinearity effects in contiguous 

datasets. Developments from machine learning such as self-learning decision trees, partial least square 

regressions, sparse ordination methods, Gaussian processes or support/import vector machines 

(Breiman, 2001; Helland, 1990; Vapnik, 1998; Witten et al., 2009; Zhu and Hastie, 2002) used 

independently or in combination with physical models have high potential in making best use of the 

extended information in EnMAP data. 

Beyond the use of generic algorithms for empirical modeling approaches, the development of new 

multi-band indices and thematic, non-linear transformations is needed. These developments must be 

robust and transferable. However, in most cases a biome-specific calibration procedure will be required 

and will be a key aspect of future algorithm development. 

The parameters derived from these various retrieval methods are then used as proxies for a variety of 

vegetation properties including taxonomic variables such as floristic or species composition (Britz et 

al., 2022; Feilhauer et al., 2021), plant functional type (Lavorel et al., 2011; Ustin and Gamon, 2010; 

Van Cleemput et al., 2021), and invasive species mapping (Kopeć et al., 2019; Skowronek et al., 2017; 

Somers and Asner, 2013) biophysical variables such as leaf area index (LAI, Lee et al., 2004; Xie et 

al., 2021), leaf mass per area (Féret et al., 2019), and canopy equivalent water thickness (Wocher et al., 

2018); and biochemical variables such as relative chlorophyll content (Jiang et al., 2022) and canopy 



3 Main application fields for EnMAP  

EnMAP Technical Reports: EnMAP Science Plan, doi:10.2312/enmap.2016.006  18 

 

nitrogen and phosphorous content (Watt et al., 2020). The advancements in plant trait retrieval methods 

have also facilitated advancements in multi-scale biodiversity monitoring (Lausch et al., 2016). Traits 

retrieved from imaging spectroscopy can be powerful indicators of aboveground plant biodiversity 

(Gholizadeh et al., 2020; Seeley and Asner, 2021). Satellite hyperspectral data like EnMAP are 

recognized as a key tool in deriving priority Essential Biodiversity Variables (EBV; (Pereira et al., 2013; 

Skidmore et al., 2021, 2015), thereby contributing to the Aichi Targets set by the Convention on 

Biological Diversity (Petrou et al., 2015). 

Additional vegetation properties including photosynthetic activity (Braun et al., 2017; Smith et al., 

2002), aboveground biomass (Cho et al., 2007; Halme et al., 2019; Mutanga and Skidmore, 2004), 

carbon and water fluxes (Fuentes et al., 2006), ecosystem structure (Asner et al., 2005), and successional 

stage (Oldeland et al., 2010) have also been successfully retrieved from in situ and airborne imaging 

spectroscopy data. Given the sensitivity of hyperspectral data to pigments, these data are well suited for 

identifying and monitoring phases of plant phenology (Dronova and Taddeo, 2022). Phenological 

studies using air and spaceborne imaging spectroscopy have successfully identified invasive species, 

unique flower pigments, chemical traces of flowering events, as well as differentiating between flowers 

and other plant parts (Landmann et al., 2015; Rizaludin Mahmud et al., 2020; Zhang et al., 2019). These 

data are fundamental in improving carbon emission monitoring and accounting (Numata et al., 2011; 

Nurda et al., 2020) and necessary to achieve goals set out by initiatives such as The European Green 

Deal: Commission on Sustainable Carbon Cycles and REDD (UN Collaborative Initiative on Reducing 

Emissions from Deforestation and Forest Degradation 

In preparation for the operational phase of EnMAP, many studies using simulated EnMAP spectra and 

imagery have demonstrated the utility of spaceborne hyperspectral remote sensing in monitoring and 

understanding natural ecosystems. Simulated EnMAP data have been successfully applied to classify 

plant species and assemblages in a wide variety of natural, non-forested ecosystems including wetlands 

(Gasela et al., 2022), shrublands (Suess et al., 2015), wildland-urban interface (Jänicke et al., 2020; 

Okujeni et al., 2021), subalpine and alpine ecosystems (Jędrych et al., 2017; Marcinkowska-Ochtyra et 

al., 2017), and Arctic tundra (Beamish et al., 2017). Retrieval of LAI (Locherer et al., 2015b), 

aboveground biomass (Cooper et al., 2021), as well as chlorophyll content and maximum carboxylation 

rate (Pacheco-Labrador et al., 2020). Though EnMAP will provide high spectral resolution data and 

systematic coverage, the relatively coarse spatial resolution does present challenges to some 

applications in heterogeneous natural ecosystems. This is particularly true in ecosystems where sub 

pixel heterogeneity cannot be spectrally resolved. 

EnMAP imagery will provide extremely useful data at regional scales for monitoring natural 

ecosystems and their services, by facilitating quantification of biophysical and biochemical gradients, 

and heterogeneous species composition and pixel fractional cover. 

The following main scientific tasks are related to vegetation applications: 

• Retrieval of biochemical and biophysical variables as input for ecosystem and species habitat models 

to improve understanding of ecosystem and ecological processes; 

• Assessment of spatial patterns of ecosystems and biodiversity from local to global scales in the 

context of nature conservation legislation, such as the European Special Areas of Conservation 

(Habitats Directive) within the Natura 2000 Network; 

• Mapping and quantification of species traits, which can relate to ecological processes, ecosystem 

functioning and provided ecosystem services;  

• Assessment of the state of biodiversity and ecosystems, as well as the services they provide, such as 

the above-ground carbon sequestration potential, to contribute to international initiatives, such as 
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the regional and global assessments being done by the Intergovernmental Platform on Biodiversity 

and Ecosystem Services (IPBES) and the European Green Deal Commission on Sustainable Carbon 

Cycles; 

• Monitoring of natural or quasi-natural vegetation areas (such as protected areas, naturalized, un-used 

or extensively used areas) to understand causes and driving forces of changes; for example, in the 

context of land abandonment, forest disturbance or land degradation processes in order to combat 

biodiversity loss and promote ecosystem stability (e.g., REDD);  

• Retrieval of Essential Biodiversity Variables (EBV) relating to species populations, species traits, 

community structure, ecosystem structure and ecosystem function, thereby contributing to 

international targets such as the Aichi targets set by the Convention on Biological Diversity (CBD); 

• Quantification of spatial and temporal ecosystem transitions, such as vegetation succession, habitat 

heterogeneity, plant or animal community transitions, and assessment of potential feedback 

mechanisms; and 

• Investigation of the effect of climate change and other anthropogenic and non-anthropogenic forces 

on global vegetation gradients. 

3.1.2 Forests 

Worldwide, forests provide timber and non-timber products as well as numerous environmental goods 

and services. These include conservation of biological diversity and climatic regulation, which are 

crucial for local livelihoods (FAO, 2010). Forests and forested ecosystems are rapidly degrading under 

increasing global change pressure (Peng et al., 2011) and the expansion of human population and 

economies (Hansen et al., 2008). Deforestation and the loss of carbon and biodiversity associated with 

conversion of forests to agricultural land, legal and illegal timber harvesting, drought stress, biotic 

stress, and recurrent wildfires are some of the most important processes affecting forested landscapes 

(Anderegg et al., 2013; Bond et al., 2010; Ciais et al., 2005; Huang et al., 2019; Schuldt et al., 2020). 

Forest management challenges are multiscale and intricately linked to society’s needs to preserve forest 

integrity while also benefiting from forest products. Sustainable forest management must combine 

economic interests with ecological concerns. In this context, remote sensing data can serve both 

economically oriented assessments and management needs as well as studies of ecological processes 

and functioning (Franklin, 2001). Applications of remote sensing data to sustainable forest management 

are generally presented in four categories that include 1) classification of forest cover type (i.e., tree 

species), 2) estimation of forest structure and available resources (i.e., timber volume, height, age, 

crown closure), 3) forest change detection and 4) forest modelling. For each category, measurable 

indicators are needed to quantify the effects of management activities and natural phenomena on the 

sustainability of forest resources. Current research is directed at quantitatively relating remotely sensed 

spectral information to ground-based assessments of structural and physiological aspects of forest 

condition. 

EnMAP data will facilitate the efficient characterization of the spatial distribution of forest ecosystems 

and support inventories of forest resources. Such inventories are typically comprised of quantitative 

attributes related to forest species, health, and functioning, including estimates of chlorophyll, nitrogen, 

lignin and canopy water content (Asner et al., 2011; Goodenough et al., 2003; Matson et al., 1994; 

Schlerf et al., 2010, 2005). Quantifying species-specific canopy biochemistry using imaging 

spectroscopy is well established to map forest species and ecosystems (Goodenough et al., 2003; Martin 

et al., 1998). The fusion of hyperspectral data with other remote sensing data sources like SAR or 

LiDAR offers additional perspectives to estimate forest structure, forest type, biomass, timber volume, 



3 Main application fields for EnMAP  

EnMAP Technical Reports: EnMAP Science Plan, doi:10.2312/enmap.2016.006  20 

 

tree heights, stem densities, and age classes (Anderson et al., 2008; Buddenbaum et al., 2013; Dalponte 

et al., 2008; Huang et al., 2010). It is also possible to estimate above-ground carbon by combining 

hyperspectral imagery with geographic information, in situ measurements, and physiological models 

(Le Maire et al., 2005), as well as texture and object information (Blaschke, 2010; Buddenbaum et al., 

2005; Van der Linden, 2007). The high spectral resolution of EnMAP data is expected to improve 

estimates of forest structure and condition and therefore above-ground carbon stocks.  

Like other biomes, hyperspectral data of forests will facilitate the quantification of essential biodiversity 

variables (Skidmore et al., 2021). Sustainable forest management, as prescribed in the New EU Forest 

Strategy for 2030 (European Commission, 2021) aims to increase the climate effects of forests (e.g., by 

increasing the carbon stocks and sinks in forests) while preserving biodiversity loss. Imaging 

spectroscopy with a spatial resolution comparable to that of EnMAP allows the quantification of beta 

diversity, i.e., variation in plant species composition (Schweiger et al., 2018). The scale of diversity 

which can be directly mapped depends on the ratio of pixel to plant size: airborne hyperspectral data is 

capable of separating overstory species (e.g., Laurin et al., 2016; Schäfer et al., 2016). It is therefore 

possible that EnMAP can detect relatively homogeneous patches of a single species in semi-managed 

landscapes, but its applicability to different forest biomes needs further investigation. Information on 

biodiversity and especially on the spatial distribution of forest stands with a larger diversity value will 

be essential in future forest management and protection. 

Imaging spectroscopy-derived structural and biochemical properties serve as required inputs to 

initialize, calibrate, and validate regional and global models of carbon exchange, evapotranspiration and 

nutrient cycling (Tenhunen et al., 1998). The availability of EnMAP data will provide new insights into 

regional scale models which in turn can assist management decisions to mitigate the effects of climate 

change on a regional scale. A final property that has received increased attention in the last decade 

is sun-induced chlorophyll fluorescence (SIF). SIF is closely linked to photosynthetic activity and can 

be measured using imaging spectroscopy (Guanter et al., 2014; Meroni et al., 2009; Rascher et al., 2009; 

Wang et al., 2022). However, the spectral resolution of the sensor used to derive SIF is critical for 

reliable measurements (Damm et al., 2014). Therefore, it remains to be seen if the spectral band design 

of EnMAP will allow for estimates of vegetation fluorescence; this will be important with respect to 

defining instrument requirements for future spaceborne systems. 

Spaceborne hyperspectral imagery has the potential to improve assessments of reforestation, 

afforestation, and deforestation rates at regional scales (Clark et al., 2011; Goodenough et al., 1998). 

These measures are essential for documenting changes in forests over time and are urgently required 

for the implementation of the Agreement of the Paris Summit on Climate Change (December 2015). 

Previous studies on forest ecosystems emphasize the utility of imaging spectroscopy to provide detailed 

and accurate retrievals of relevant vegetation properties (Ollinger and Smith, 2005; Schaepman et al., 

2004). The most important vegetation properties for assessing forest health, biochemistry and overall 

ecosystem functioning are leaf chlorophyll and nitrogen content, the fractions of photosynthetically 

absorbed radiation (fAPAR), canopy water content, annual maximum leaf mass per area (LMA), and 

annual maximum leaf area (LAI) (e.g., (Lausch et al., 2017; le Maire et al., 2008; Meiforth et al., 2020). 

An important requirement for the successful retrieval of some of these properties is that leaf-level 

signals are compensated for in canopy-scale measurements (Knyazikhin et al., 2013; Malenovský et al., 

2019).  

The quantification and monitoring of additional forest-related phenomena such as wildfires and 

disturbance will also benefit from EnMAP data. The enhanced potential of imaging spectrometers to 

identify drought and moisture levels of critical fuel will provide important perspectives for wildfire 

management (Koetz et al., 2008; Kötz et al., 2004; Veraverbeke et al., 2018, 2014). Additionally, 

spaceborne imaging spectrometers have the potential to identify insect attacks at early stages when the 
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effects on forest reflectance are subtle and cannot be detected with conventional multispectral sensors 

(Abdullah et al., 2019; Fassnacht et al., 2012; Niemann et al., 2015; Wulder et al., 2009). 

Given the complexity of hyperspectral data analysis, advanced methods have been developed to support 

the analysis of EnMAP data (Goodenough et al., 2012, 2007). Forest leaf and canopy reflectance models 

require the integration of forest structure, clumping, shadowing and understory effects. Reflectance 

models ranging from simple approaches like INFORM (Atzberger, 2000) or 4-scale (Chen and Leblanc, 

1997) to more complex geometric-optical radiative transfer models like FRT (Kuusk and Nilson, 2002) 

or ray tracing models like FLIGHT (Gerard and North, 1997) have been developed and validated in 

order to analyze the complex hyperspectral signal of forests (Förster et al., 2010). Despite some 

successful attempts (Combal et al., 2003; Kötz et al., 2004; Schlerf and Atzberger, 2006; White et al., 

2000), the inversion of these models is still a challenge and a pressing research issue for the future. 

EnMAP will enable derivation of spectral indices that will serve as bio-indicators of forest health. 

Through repetitive sampling of selected forest condition test sites, EnMAP will add the phenological 

history to the full spectral sampling data to yield effective bio-indicators of forest condition. EnMAP 

will provide a capability to compare observations of spectral properties of forests in many different 

countries. This is essential to develop a consistent tool for monitoring the carbon state of the world’s 

forests and their response to climate change. Frequent and broad coverage will increase our 

understanding of the links between pigments, canopy chemistry, stress, and forest type. For forest 

inventory programs, hyperspectral data from EnMAP will provide an important sampling system to 

ensure precise measurements of indicators for a sustainable development. 

Accordingly, the following main scientific tasks are considered important concerning forest 

applications: 

• Mapping of forest species distributions using hyperspectral, fused and multitemporal datasets, 

exploring the potential of advanced classification algorithms, texture and object information, and 

linkages to geographic databases, etc.;  

• Estimation of forest biomass, above-ground carbon, and productivity;  

• Detection of biodiversity hotspots and essential biodiversity variables for forest management and 

protection planning; 

• Assimilation of biochemical and structural forest parameters into process models;  

• Enhancement and development of invertible vegetation canopy reflectance models for the extraction 

of forest parameters, and forest mensuration, health, and risk assessment;  

• Investigation of the viability of phenological signatures through indicators of canopy pigments and 

chemistry with regard to ecophysiological processes;  

• Development of improved indicators of forest condition and health;  

• Development of forest monitoring procedures, including multi-temporal and multi-sensor data, for 

the detection of changes in forest quality and canopy cover; and  

• Creation of advanced expert systems to improve the efficiency of hyperspectral information 

extraction within the forestry context. 

3.1.3 Agricultural lands 

Limited bioproductive land coupled with progressing land degradation, rising population, increasingly 

meat-prone diets and a growing demand for biofuels cause substantial land use conflicts between food, 

fiber and energy production. The additional pressure of on-going climate change and increasing extreme 
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meteorological events also threatens ecosystem services like biodiversity. To protect natural ecosystems 

while meeting the growing demand for agricultural commodities global land productivity must be 

substantially increased (Mauser et al., 2015). Global studies highlight that large appropriation of land 

resources leads to low efficiencies in land management (e.g., water use; Haberl et al., 2007; Kijne et 

al., 2009). The challenge of sustainably meeting global agricultural demands involves a wide range of 

land management aspects, including selecting suitable crops and cultivars, monitoring and improving 

water productivity, promotion of organic farming, fertilizer optimization and plant protection, soil 

conservation, and efficient irrigation systems. Recently, the role of agricultural soils as long-term 

carbon sinks to mitigate the negative climate-related effects of agricultural activities has been intensely 

discussed. Known as “Carbon Farming” practices such as working in crop residues and cultivating 

intermediate crops aim to enrich soil organic carbon in agricultural soils (Mattila et al., 2022a). Due to 

spatial variability in climate, soils, and topography, as well as societal aspects like culture, education, 

technology, and markets, agricultural management critically relies on spatial data to support 

management decisions. Modern farming practices naturally incorporate the identification, analysis, and 

management of spatial and temporal heterogeneity and variability to optimize profitability, 

sustainability, and environmental protection (Mauser et al., 2015).  

More than 20 years ago Moran et al., (1997) identified key areas where remote sensing could provide 

spatial information relevant for agricultural management. These areas included mapping crop yield and 

biomass status as well as monitoring seasonally and spatially heterogeneous soil and crop 

characteristics. Since this early assessment, our understanding of farming-related land management has 

progressed to detailed site-specific management to support sustainable production and increased 

productivity. Sustainable agricultural management includes early detection of plant disease, water and 

nutrient stress, monitoring agriculture intensification and evaluation of changing land viability due to 

climate-induced shifts in cultivation belts (Franke et al., 2022; Zabel et al., 2014). The implementation 

of these land management practices has led to a new demand for more complex and integrated spatial 

information around the globe. For example, land evaluation requires data to evaluate site and plant 

specific yield gaps (i.e., the differences between potential and actual harvested yields), fertilizer use 

intensity, as well as determination of seeding dates and detection of phenological phenomena. 

Hyperspectral data like that provided by EnMAP delivers more detailed agricultural information 

compared to multispectral data and can better support farming management decisions (Hank et al., 

2019). Multispectral data are commonly used to derive agriculturally relevant information through 

statistical regression analyses between ground-based measurements of biophysical variables and simple 

spectral indices. Hyperspectral data enable the application of more complex approaches that fully 

exploit the continuous spectral information provided by imaging spectrometers. One important 

approach making use of the continuous spectral information are invertible leaf and canopy radiative 

transfer models (RTM). RTMs infer biochemical/biophysical parameters from continuous canopy 

spectral reflectance and have been successfully applied to field crops and grasslands (Berger et al., 

2018a, 2018b; Danner et al., 2019; Jacquemoud et al., 2009). Combined with machine learning 

algorithms, an improved physical understanding of interactions between electromagnetic radiation and 

matter is made accessible with high computational efficiency. These computational advancements are 

crucial for large regional hyperspectral datasets recorded by spaceborne systems like EnMAP. The 

recent synergies between physically-based and machine learning approaches are referred to as hybrid 

retrieval and show great promise in agricultural applications (Berger et al. 2021a). 

Variables that control productivity and health of crops and can be estimated using hyperspectral data 

and RTM inversion: 
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• Leaf area index (LAI) describing the size of the producing layer and the surface that is available for 

exchange processes between the Earth’s surface and the atmosphere (Locherer et al., 2015a; Weiss 

et al., 2001);  

• Absorbed photosynthetically active radiation (APAR) providing the amount of absorbed energy 

potentially usable for production (Weiss et al., 2010);  

• Chlorophyll content as the chemical agent for photosynthesis, which is dependent on the crop 

nitrogen status (Danner et al., 2017; Haboudane et al., 2002; Oppelt and Mauser, 2003);  

• Water content as an indicator for crop water status and crop maturity (Hank et al., 2010; Wocher et 

al., 2018);  

• Plant density as an indicator of disease sensitivity (Larsolle and Hamid Muhammed, 2007); and 

• Plant pigments, such as carotenoids and anthocyanins, as indicators of adaptation of the canopy to 

varying light conditions or other stressors (Blackburn, 2007; Gamon et al., 2015; Wocher et al., 

2020).  

The development of new canopy reflectance models such as PROSPECT-PRO, where the absorption 

caused by proteins and carbon-based constituents can explicitly be discerned (Féret et al., 2021), have 

led to new variables of interest, which can be retrieved from hyperspectral data: 

• Canopy nitrogen content, which is key to monitoring the nitrogen use efficiency, i.e., the relation 

between nitrogen fertilizer input and nitrogen content achieved in the harvested parts of the canopy, 

and the yield quality of crops, which for example for cereals directly depends on the protein content 

of the grains (Berger et al., 2020; Verrelst et al., 2021) 

• Non-photosynthetic vegetation (NPV) or carbon stored in crop biomass, which is important to assess 

the impact of agricultural management on the carbon cycle (Berger et al., 2018b; Pepe et al., 2020). 

Although not supported in all cases by physical absorption features, statistical retrieval approaches 

using hyperspectral data have recently shown promising results for detailed canopy constituents such 

as: 

• Micro- and macronutrients, e.g., Kalium, Potassium, Nitrogen, Sulphur, Calcium, Ferrum, 

Magnesium, Zinc, which all depend on agricultural management and determine the nutritional value 

of crop production (Belgiu et al., 2021). 

• Different biotic and abiotic stressors, which strongly influence vegetation development and where 

hyperspectral methods may successfully contribute to plant stressor discrimination (Berger et al., 

2022; Lassalle, 2021). 

Assimilation of plant properties into agro-ecological models allows for an explicit simulation of crop 

growth, development, and yield using spatially heterogeneous hyperspectral data. Model-based 

assimilation approaches provide site-specific information on key farming variables, such as biomass, 

plant height, crop yield, nitrogen or phosphorus deficit and/or uptake, which are not directly observable 

with remote sensing. Time series of remotely sensed crop variables account for spatiotemporal 

heterogeneity in agricultural production models, which then can be used to explore the suitability of 

different management options (Hank et al., 2012; Huang et al., 2019). Vegetation properties such as 

LAI, phenology, seeding and harvesting dates or soil moisture can also be derived from multispectral, 

thermal or microwave sensor time series. Ultra-high spectral resolution systems allow for the 

monitoring of SIF, which can be used as a proxy for photosynthetic efficiency (Guanter et al., 2014; 

Rascher et al., 2015).  
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Dynamic vegetation models that assimilate spatially heterogeneous hyperspectral data simulate plant 

growth based on eco-physiological processes and feedbacks during photosynthesis and respiration. The 

most realistic representation of vegetation dynamics in regional agro-ecological models as well as 

regional to global ecosystem and Earth system models is based on a combination of dynamic vegetation 

models, agricultural management models, and canopy models. Together they simulate the distribution 

of assimilates among the plant constituents (i.e., roots, stem, leaves, grains) to represent complex 

canopy layers (e.g., LPJ-mL (Bondeau et al., 2007), PROMET (Hank, 2008), DSSAT(Hoogenboom et 

al., 2019)). Studies have shown that data assimilation approaches are viable and provide good results 

(Hank et al., 2015; Machwitz et al., 2014). Nevertheless, further research and development is needed to 

improve models, in particular process representation and accuracy. To reach an operational stage of 

such coupled model systems, various data assimilation methods should be tested under a broad range 

of farming conditions, especially in regions with low-efficiency farming systems. Testing should also 

include different crops (e.g., cassava, sorghum, groundnut) and energy plants (e.g., sugar cane, oil palm, 

jatropha), different stresses (e.g., water, fertilizer, temperature), irrigated agriculture, and mixed silvi-

agricultural systems.  

For all remote sensing applications investigating managed farmlands, continuous monitoring of 

temporal dynamics is crucial. EnMAP will be one of the first imaging spectrometers to provide high-

quality multi-temporal hyperspectral imagery from space and, together with contemporary missions 

such as PRISMA, CHIME and SBG, will contribute to enhanced process understanding. Based on the 

knowledge already gained in numerous studies with airborne sensors, EnMAP will offer hyperspectral 

data in a suitable spatial and temporal resolution to approach the next major scientific steps, leading 

away from regression analysis and towards mechanistic process representation. 

Accordingly, the following major scientific tasks are of importance for agricultural applications: 

• Development and improvement of accurate, robust and reliable biophysical variable retrieval 

methods based on inversion of improved canopy RTMs using imaging spectroscopy data and being 

computationally supported by machine learning algorithms (crop type, LAI, APAR, chlorophyll 

content, plant water content, canopy geometrical structure);  

• Development and improvement of methods for the quantitative mapping of soil variables, also taking 

the spectral signal of green and senescent vegetation into account, that will allow for tracing the 

gradual enrichment of soil organic carbon as part of soil melioration processes;  

• Development and improvement of approaches to derive complex canopy variables, e.g., canopy 

nitrogen/protein content, crop phenology, management intensity, yield gaps, non-photosynthetic 

plant tissue and crop residues, from hyperspectral remote sensing data in conjunction with ancillary 

remotely sensed data;  

• Development of operational methods for biomass, yield mass and yield quality estimation and 

forecasting based on hyperspectral remote sensing and ancillary data in combination with complex 

process models; 

• Mapping of crop species distribution using time series of hyperspectral information;  

• Distinguishing of crop stressors like nitrogen or other micro- and macronutrients deficiency, crop 

disease, insect infestation, water stress, and chlorosis; and  

• Development and improvement of approaches to assimilate remote sensing derived spatial 

distributions of vegetation and soil variables into dynamic agro-ecological models, which can serve 

as a basis for integrated information-driven agricultural management systems  
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3.2 Geology and soils 

Imaging spectroscopy is an effective tool to detect, monitor, and manage key abiotic natural resources 

including minerals, soils, and fossil fuels, which are largely non-renewable. Current research in 

hyperspectral remote sensing focuses on the assessment of mineral deposits (Bedini, 2017; 

Peyghambari and Zhang, 2021), the detection of oil spills (Lammoglia and Filho, 2011; Yang et al., 

2020), the derivation of soil properties (Ben-Dor et al., 2009; Chabrillat et al., 2019; Ge et al., 2011; Lu 

et al., 2020), and the evaluation and monitoring of soil quality (e.g., water and carbon storage, 

acidification and erosion) (Schmid et al., 2016; Stevens et al., 2013).  

3.2.1 Geology and exploration 

Minerals, or more specifically ore minerals, contain economically valuable elements (mainly metals), 

which are essential to modern industry and, therefore, the development of society. The constantly 

changing demand of ores and the criticality to the producing industry causes perennial re-evaluations 

of existing occurrences, deposits and mines, and the global detection and validation of new deposits. 

Among geophysical and geochemical field surveys, hyperspectral remote sensing surveys are 

increasingly applied to exploration investigations. The basic principle of hyperspectral remote sensing 

for mineral detection is the mathematical description and statistical analysis of material characteristic 

signals in the spectral ranges of the visible and infrared wavelength range (Clark et al., 2003; Hunt, 

1977; van der Meer, 2004; van der Meer et al., 2012). These characteristic signals (absorption bands) 

are physically based on electronic transitions in the d- or f-orbitals of the elements (e.g., transitions into 

the valence band for Fe and crystal field transitions for rare earth elements), or vibrational motions and 

their overtones in the molecular bonds (e.g., Fe-OH and Mg-OH in amphiboles, Al-OH in clay minerals, 

CO3 in calcium carbonates) (Dieke and Crosswhite, 1963; Hunt, 1977; Swayze et al., 2014).  

The EnMAP hyperspectral satellite has the potential to identify, characterize, and map many VNIR–

SWIR active minerals on the Earth’s surface provided that the mineral occurrences are large enough to 

be resolved at 30 m and vegetation cover does not exceed 30% of the pixel area. The detectable minerals 

can be grouped into the following classes (Hunt and Ashley, 1979): 

• Phyllosilicates (di-, and tri-octahedral): clay minerals comprising the kaolinite group of minerals 

(kaolinite, halloysite, dickite, nacrite, etc.), smectites (montmorillonite, nontronite, saponite, and 

hectorite), and illite, talc, pyrophyllite, mica group (muscovite, phengite, biotite, vermiculite), 

chlorite (Fe-, and Mg-rich species), and serpentine group (antigorite, chrysotile, and lizardite). 

• Sorosilicates: epidote and clinozoisite. 

• Nesosilicates: olivine and topaz. 

• Syclosilicates: tourmaline (schorl, dravite). 

• Tectosilicate: opal, scapolite, zeolite 

• Inosilicates: tremolite series (tremolite, actinolite, hornblende, riebeckite) and pyroxene group 

(diopsite). 

• Carbonates: calcite, dolomite, siderite, magnesite, and ankerite. 

• Sulphates: gypsum, anhydrite, alunite, jarosite, copiapite, schwertmannite 

• Oxides & hydroxides: hematite, maghemite, chromite, goethite, lepidocrocite, ferrihydrite, diaspore, 

gibbsite, brucite 

• Ammonium-bearing minerals: buddingtonite (ammonium feldspar), a–illite, etc. 
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EnMAP hyperspectral data are expected to be widely used for mineral and resource exploration. The 

mineral systems that could be studied in this way include porphyry copper (±Au–Mo) (Graham et al., 

2018), low-, and high-sulfidation epithermal gold (Bedini, 2009; Portela et al., 2018; Swayze et al., 

2014; Thomas and Walter, 2002), Carlin-type gold (Rockwell and Hofstra, 2008), Archean Lode gold 

(Bierwirth et al., 2002), volcanogenic massive sulfide (VMS) deposits (Cudahy, 2016; Van Ruitenbeek 

et al., 2012), iron oxide-copper-gold (IOCG) (Laukamp et al., 2011), calcic and magnesium skarns and 

polymetallic deposits (Rowan and Mars, 2003; Wan et al., 2021), sediment-hosted Pb-Zn mineralization 

(Budkewitsch et al., 2000; Yang et al., 2018), uranium mineralization (Salles et al., 2017), carbonatites 

and associated REE and niobium (Nb) deposits (Bedini, 2009), kimberlites (Kruse and Boardman, 

2000), as well as lithium resources (Cardoso-Fernandes et al., 2020), iron ore deposits (Cudahy, 2016), 

bauxites (Kusuma et al., 2012), and many industrial minerals (King et al., 2012). 

In the volcanic environment, EnMAP data could be used for lithologic mapping and characterization of 

different rock units including felsic (Rivard et al., 2009), mafic (Harris et al., 2005), ultramafic rocks 

(Rogge et al., 2014; Rowan et al., 2004), ophiolite sequences (Roy et al., 2009), peridotites (Launeau 

et al., 2002), and mapping and monitoring of volcanoes and their resulting debris (Kereszturi et al., 

2018). Over metamorphic rocks, EnMAP data could be useful to study metamorphism (T-P path) and 

map the zonation associated with metamorphic minerals (Kozak et al., 2004). 

In sedimentary terrain, EnMAP could be used for facies mapping and stratigraphic classification (Dadon 

et al., 2012), characterization of post-depositional history in a sedimentary basin, mapping of red-bed 

bleaching (Bowen et al., 2007), differentiation between different carbonate phases (Keeling et al., 

1998), dolomitization discrimination (McCormick et al., 2021; Windeler and Lyon, 1991), gypsum 

quantification (Milewski et al., 2019) and identification of micro seepage-prone zones in a sedimentary 

basin (Asadzadeh and de Souza Filho, 2017). In playa and evaporative lakes, hyperspectral data could 

be applied to differentiate between evaporate minerals in the environment (Crowley, 1993; Kodikara et 

al., 2012). Eventually, the imaging spectroscopic data could be useful for regolith mapping in highly 

weathered terrains (Agustin, 2017) and for determining the mineralogical variations of aeolian deposits 

(dunes) in desert environments (Hubbard et al., 2018). 

Four key products could be directly extracted from EnMAP spectral reflectance data including mineral 

classification, mineral abundance (i.e., areal fractional cover of mineral within each pixel), mineral 

compositional variations (e.g., the degree of Tschermak substitution in white micas), and finally mineral 

crystallinity (e.g., kaolinite crystallinity) (Asadzadeh and de Souza Filho, 2017). The spectroscopic 

contents of the image, however, could be statistically correlated to a rich variety of other geological- 

geochemical variables. 

Classification maps derived from hyperspectral data are useful for the identification and 

characterization of alteration mineral assemblages, visualization of zonation patterns around mineral 

deposits as well as for lithology mapping. Abundance maps provide semi-quantitative information 

about the proportion of minerals present in each pixel and scene, which can be indicative of ore grades 

(e.g., in the case of monoaminergic deposits). Composition maps can indicate physiochemical 

conditions (temperature, pressure, redox, pH, and chemical activities) of the 

mineralized/metasomatized/altered systems and provide a vector toward the orebodies (Cudahy et al., 

2008). It is also useful for demonstrating the large footprints of a mineral system. Composition maps 

can also be deployed to infer paleo-fluid pathways and fluid-rock reaction zones in outcropping 

lithology (Cudahy, 2016). Crystallinity maps (e.g., for kaolinite) can indicate mineral quality and origin 

and the degree of bedrock weathering. Other information extractable from EnMAP data products could 

be oxidation-reduction fronts, paleo-erosion and paleo-surface levels, and pH of mining sites (more on 

this in section 3.7). 



3 Main application fields for EnMAP  

EnMAP Technical Reports: EnMAP Science Plan, doi:10.2312/enmap.2016.006  27 

 

In many aspects, EnMAP data can complement high-spatial and/or high-temporal resolution 

multispectral data for mapping and monitoring purposes and improve the resource exploration 

processes.  

The following main scientific tasks are related to geological exploration: 

• Development of versatile algorithms for the identification and mapping of listed minerals under 

complex mixing conditions; 

• Analysis of the capability of hyperspectral data for the detection of rare earth minerals based on 

different globally distributed sites; 

• Development of new algorithms and models for non-linear, weighted unmixing and mineral 

quantification approaches; and 

• Analysis of the capability of EnMAP data in new fronts in geology and mineral exploration including 

(but not limited to) lithium and rare earth element resources. 

• Investigation of the effects of mineral-induced stress on the spectral signature of dense vegetation 

canopies to establish a link between vegetation stress and specific minerals. 

• Spectral unmixing and removal of the effect of vegetation on spectral signatures of minerals. 

3.2.2 Digital soil mapping 

Soil is a fundamental and irreplaceable natural resource, which is largely non-renewable. Soils are 

complex dynamic systems, which are formed and developed through the combined effects of climate 

and biotic activities, modified by topography. Soil development can be either progressive or regressive 

with time, and a modification of the chemical, physical, and mineralogical properties of soil surfaces 

can take place at variable time scales from event-based to seasonal. Soil provides a multitude of land-

based ecosystem goods and services supporting and regulating life on the planet. It carries out several 

key environmental functions that are essential for human subsistence, such as food, fiber and timber 

production, water storage and redistribution, pollutant filtering and carbon storage. In the last years, the 

role of soils as long-term carbon sinks and land management practices of so called “carbon farming” 

have gotten much attention (e.g., on the EU level) to tackle climate change, bringing benefits in terms 

of carbon sequestration, storage and other co-benefits. Understanding the response of soils to external 

drivers (global environmental changes, management) to assist in decision making at all scales requires 

precise spatially referenced soil data and maps. However, conventional soil surveys are scarce, 

expensive, time intensive and often not comparable (harmonized), which precludes a meaningful 

assessment of the state of soil resources at large scales. As an alternative, laboratory soil spectroscopy 

has proven to be a fast, cost-effective, non-destructive, and repeatable analytical technique that can be 

used to monitor the state of soils (Chabrillat et al., 2019; Nocita et al., 2015). From airborne platforms, 

hyperspectral remote sensing of soil can quantify key topsoil properties (organic carbon, texture, 

mineralogy) over a broad gradient of soils. In particular, the amount of organic matter and iron content, 

particle size distribution, clay mineralogy, water content, soil contamination, cation exchange capacity 

and calcium carbonate content, can be determined with imaging spectroscopy (e.g., Ben-Dor et al., 

2009; Chabrillat et al., 2019; Stevens et al., 2013). Due to the complexity of soil as a mixture of organic 

and inorganic compounds and expressed in VNIR reflectance properties, simple band assignment 

techniques or spectral matching, such as those done in the field of geology, are rarely used. Instead, 

multivariate calibration (i.e., statistical) approaches, which allow full quantification of the soil 

properties based on field data for local calibration, are preferred. In recent years, digital soil mapping 

has been driven by novel artificial intelligence (AI) algorithms for the prediction of soil properties from 

spectral data. AI and more concrete the machine (ML) and deep learning (DL) algorithms lie at the core 
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of soil spectroscopy regression analyses (Angelopoulou et al., 2019; Gholizadeh et al., 2018), since they 

achieve unprecedented levels of performance when learning to solve increasingly complex 

computational tasks, especially using hyperspectral data. Furthermore, localized learning approaches 

have been shown to yield better results compared to global approaches, as spectrally and/or spatially 

neighboring samples tend to produce concentrated clusters with limited spectral variation (Ramirez-

Lopez et al., 2013; Tziolas et al., 2019; Ward et al., 2020). 

Hyperspectral data provided by EnMAP has considerable potential to characterize the pedosphere by 

identifying soil properties, their changes over time, and relationships between soil degradation and 

canopy spectroscopy (Milewski et al., 2022). Digital soil mapping toolboxes that include automatic 

identification and semi-quantification of key soil properties, such as organic carbon, water content, clay, 

iron, carbonates mineral content, are already available at a global scale (Chabrillat et al., 2011). For the 

full quantification of soil properties, EnMAP simulations (Chabrillat et al., 2014; Milewski et al., 2019; 

Steinberg et al., 2016) and recent PRISMA data (Mzid et al., 2022) facilitated the generation of soil 

maps in specific test sites where ground-reference data were available. In view of limited arable land 

area and rising population, the emerging field of precision farming is receiving increased attention and 

the soil science community is facing a growing need for regional, continental, and worldwide digital 

soil databases to monitor the status of the soil. Supported by imaging spectroscopy, soil conditions can 

be better assessed allowing farmers to better evaluate critical needs such as irrigation, nutrient supply, 

and cultivation to gain increased agricultural yields (Demattê et al., 2000; Wesemael, 2022). 

Nonetheless, advances are still necessary to fully develop hyperspectral products that can support, in a 

credible manner, digital mapping and monitoring of soils (Wulf et al., 2015). To exploit the full 

potential of spaceborne imaging spectroscopy for soil mapping, challenges have been identified, e.g., 

linked to limitations in reference data availability (specifically global standardized soil spectral library 

databases) and in methodological approaches and tools adequate to process spectral data into practical 

soil model solutions that are globally applicable (e.g., Ben-Dor et al., 2019; Chabrillat et al., 2019). In 

this context, extensive efforts are currently being made to establish regional, national, continent-wide, 

and global soil spectral libraries.  

A number of recent case studies emphasize leveraging open source, regional to continental soil spectral 

libraries such as the European LUCAS SSL (Orgiazzi et al., 2018) to exploit upcoming hyperspectral 

remote sensing data (e.g., EnMAP data) by using state of the art machine learning and deep learning 

techniques to model soil properties with high accuracies (Tziolas et al., 2020; Ward et al., 2020). New 

developments to harmonize global soil spectral databases that should be acquired following common 

standards and procedures so that they can be merged with other soil spectral libraries (Ben Dor et al., 

2015; Chabrillat et al., 2019; Francos and Ben-Dor, 2022). A further ongoing challenge of digital soil 

monitoring efforts are soil surface conditions that disturb the spectral signal at the spatial resolution of 

the sensor such as soil moisture, roughness, and mixing with residual photosynthetic active, as well as 

none-active vegetation that also can be dynamic over time (Chabrillat et al., 2019; Van Wesemael et 

al., 2021). For some disturbance effects, new physical-based and empirical modelling approach have 

been proposed to correct the impacts on soil property mapping, e.g., Diek et al., (2019) and Dupiau et 

al., (2022) for soil moisture, Kuester et al., (2017) and Li et al., (2017) for modelling of partial 

vegetation cover. However, the applicability of these methods to spaceborne hyperspectral imagery is 

not yet completely resolved. Experience in this domain from multispectral satellites (e.g., Rogge et al., 

2018) might help to develop such strategies for hyperspectral satellite data (Chabrillat et al., 2019). 

The following main scientific tasks are related to digital soil mapping: 

• Retrieval of soil properties, such as organic matter and iron content, particle size distribution, clay 

mineralogy, water content, soil contamination, cation exchange capacity and calcium carbonate 

content to analyze status and changes of soils; 
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• Improvement of methodologies and algorithms for the extraction of key soil parameters based on 

remote sensing spectral signal with emphasis on prediction accuracy and influence of spatial scale; 

• Quantitative estimation of the influence of surface parameters in bare and semi-bare areas (such as 

water content, vegetation cover, surface roughness) on the spectral signature of soils and on the 

retrieval of soil properties; 

• Analysis of the contribution of global soil databases to calibrate the remote sensing-based soil 

condition indices against reference samples; and 

• Monitoring of the state of soils and development of spatio-temporal maps of soil properties.  

3.3 Coastal and inland waters 

Coastal and inland water bodies are vital for recreation, food supply, commerce and human health, and 

they also support habitats for a large floral and faunal diversity. For decades, coastal and inland aquatic 

ecosystems have experienced pressure from increasing social and economic activities as well as climate 

change. As sinks for pollutants, coastal and freshwater ecosystems are among the most sensitive 

indicators of environmental impacts related to human activities (UNEP, 2012). For example, increasing 

eutrophication and pollution of coastal and inland water bodies caused by fluvially transported 

substances is a major global ecological problem. Substances such as phosphate and nitrogen compounds 

that cause eutrophication are derived from intensified agricultural and industrial activities. Monitoring 

and managing the water quality of coastal and inland habitats is necessary as they are vital to 

urbanization, tourism, transportation, industry, fish farming and drinking water supply. According to 

the EU Water Framework Directive, specified biological, hydro-morphological and physico-chemical 

parameters of water bodies have to be monitored on a regular basis to assess water quality. Water quality 

assessment is relevant for freshwater security and the ever-increasing aquaculture-influenced coastal 

and inland water bodies. Water quality assessment is also crucial for monitoring and managing 

endangered ecosystems, such as coral reefs, seagrass meadows and mangrove forests (Bell et al., 2008; 

Van Langevelde and Prins, 2007). 

A major advantage of hyperspectral data for monitoring coastal and shallow freshwater bodies is the 

ability to spectrally unmix optical constituents in the water column and the sea floor or lake bottom 

(Carder et al., 1993; Goetz, 2011). The advanced spectral resolution of EnMAP in the VIS, NIR, and 

SWIR spectrum will allow the assessment of phytoplankton pigments, suspended matter, dissolved 

organic matter, dissolved organic carbon concentration, and water transparency. Moreover, 

phytoplankton taxonomy can be identified, which can indicate the occurrence of harmful algal blooms 

(Bracher et al., 2009). Chlorophyll-a concentration is widely used as an indicator of algal biomass that 

depends on nitrogen and phosphate availability in water bodies (Kamarainen et al., 2009; R.E. and J., 

1996). Water transparency is a widely used indicator of the trophic state, which is influenced by the 

abundance of organic and inorganic suspended particulate and dissolved matter (Kirk, 1994). 

Researchers have developed algorithms using imaging spectroscopy data to quantify various 

parameters, including chlorophyll-a, humic substances, suspended matter, yellow substances, and water 

transparency (Dinter et al., 2015; Giardino et al., 2007; Kallio et al., 2001; Oelker et al., 2022; Schiller 

and Doerffer, 1999; Thiemann and Kaufmann, 2002, 2000). EnMAP can make use of these standards 

for detailed observations of coastal zones and inland waters, while sensors such as MODIS, VIIRS, and 

the recent OLCI as part of ESA’s Sentinels are designed for ocean applications with frequent 

observations at coarser spatial resolutions. Algorithms for coastal and inland water constituents with 

different phytoplankton, particulate and dissolved matter composition will be adapted and improved for 

EnMAP to provide water quality data at a higher spatial resolution (Bracher et al., 2021; Gege, 2021).  
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EnMAP data will provide frequent information on the type and status of seafloor substrates for optically 

shallow waters. Water column correction approaches using hyperspectral data allow the identification 

of bottom vegetation types and, if regularly monitored, the observation of sedimentation dynamics, as 

well as short- and long-term changes in species distribution and structure (Vahtmäe, 2011). Quantitative 

analyses of coastal benthic communities can provide information on net primary production (Dierssen 

et al., 2010) and many benthic species act as environmental indicators. Therefore, their consistent 

monitoring provides information of the state of coastal marine environments and evidence for 

environmental changes (Phinn et al., 2005; Vahtmäe et al., 2006). In this context, the fusion of EnMAP 

data and satellite data with a high spatial resolution (e.g., Worldview, GeoEye) offers the potential to 

pinpoint heterogeneously distributed benthic vegetation and sediment patches. The fusion with high 

spatial resolution data also offers the potential to monitor frequently invasive benthic and emergent 

species (Albright and Ode, 2010; Forrest et al., 2012). Monitoring benthic vegetation can also support 

integrated coastal zone management to monitor species (e.g., Ulva, Laminaria, seagrasses) that are 

grown for human consumption or for aquaculture (Anderson et al., 2007; Radiarta et al., 2011). Coastal 

ecosystems are highly productive and store large amounts of carbon (Cole et al., 2007; Pidgeon, 2009). 

The distribution and dynamics of organic carbon in vegetation, in combination with dissolved organic 

matter, are important for understanding regional and global carbon cycles. In this context, the EnMAP 

data provide efficient means to characterize the role of coastal and inland water bodies in carbon uptake 

and release.  

Coastal and freshwater ecosystem management involves modelling and monitoring, which require 

reliable information and robust analytical techniques. Conventional mapping methods are logistically 

constrained, and airborne campaigns are cost intensive and often limited to a few acquisitions. The 

EnMAP satellite will enable consistent quantitative monitoring of the water-related environmental 

parameters mentioned above. The combination of hyperspectral data with ecological or hydrological 

models, geographic information systems and in situ measurements allows the development of advanced 

integrated management plans for coastal zones and catchments characterized by inland water bodies, 

wetlands, or reservoirs (Radiarta et al., 2011; Yang, 2009). The fusion of hyperspectral data with 

thermal infrared data offers additional perspectives to the analysis of the trophic state of coastal or 

freshwater ecosystems. A combination of EnMAP derived bathymetry with SAR, LiDAR or Laserscan 

data can be useful to derive underwater topography and morpho-dynamics of shallow water areas 

(Pleskachevsky et al., 2011).  

3.3.1 Coral Reefs 

Coral reefs are spatially heterogeneous mosaics of coral, algae and sand. They occupy between 

250,000 km2 and 600,000 km² (Hochberg, 2011) corresponding to about 5 % – 15 % of shallow sea 

areas (0 m – 30 m depth) globally. Coral reefs host a diversity of organisms whose complex dynamics 

are affected by a vast range of interconnected processes. In addition to their ecological value, they also 

provide significant economic value, supporting fisheries, aquaculture, tourism and recreation 

(Andréfouët et al., 2005). Thriving in a narrow range of conditions, they are very sensitive to 

environmental changes and react quickly to new stressors, making them one of the most threatened 

coastal ecosystems in the world and a unique indicator of global change (e.g., Andréfouët et al., 2007). 

A decline in reef status is represented by a shift from coral- to algal-dominated community structures 

and accompanied by a general decrease in biodiversity. However, current reef surveys usually cover 

only small regions, leaving vast areas of the world’s coral reefs unsurveyed (Hochberg, 2011). Remote 

sensing is one technique with a high potential for quantifying reef community status at large scales.  

Beginning in the 2970s, remote sensing approaches used Landsat, SPOT HRV and ASTER data for the 

detection of reefs and reef geomorphology (Hochberg, 2011). The development of airborne imaging 
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spectrometers in the 1990s provided new opportunities for the identification and mapping of reef 

communities. While multispectral data can discrimination three to six classes of coral reefs (Caras et 

al., 2017; Mumby et al., 2004), an increased number of and narrower bands may allow more than 10 

habitat types to be discriminated (Hedley, 2013). More recent developments include spectral unmixing, 

“wavelength feature” approaches and radiative transfer model inversion methods that require 

hyperspectral data (Hedley, 2013). Change detection analyses still depend on multispectral imagery due 

to limitations in multi-temporal hyperspectral data availability. The most ambitious objectives, such as 

the discrimination of live coral versus dead coral and/or macroalgae, quantification of live coral cover, 

or the detection of coral bleaching events, are not yet routinely achieved (Hedley, 2013).  

In summary, coral reef remote sensing is a very dynamic field and upcoming sensors like EnMAP, are 

expected to have a major impact in the near future by providing data at new spatial scales and temporal 

frequency. Not only will the high-spectral resolution of EnMAP will allow for identification of the three 

basic reef bottom-types with high accuracy, spectral unmixing to discriminate sub-pixel composition, 

or modelling of light absorption and water optical properties, it will enable regional mapping of benthic 

community structure and long-term monitoring of reef status, increasing the understanding of the large-

scale oceanographic and ecological processes that affect reef health (Hochberg, 2011). 

Accordingly, the following main scientific tasks are related to coastal and inland water body 

applications:  

• Improvement of the identification of different substances by their spectral characteristics, such as 

improved chlorophyll quantification, the differentiation between ecological important 

phytoplankton groups, and dissolved organic compounds;  

• Enhancement of the identification of different fractions of suspended mineral and organic particles; 

• Monitoring of the spatio-temporal dynamics and structure of optical shallow sea/lake bottom 

substrate (vegetation and sediment);  

• Monitoring of the distribution patterns of invasive submersed and emergent algae;  

• Monitoring of the variety of algal species/genera in space and time as a bio-indicator of coastal and 

freshwater ecology;  

• Monitoring and taxonomic identification of (potentially toxic) algal and phytoplankton blooms in 

eutrophicated coastal and inland waters;  

• Estimation of processes, such as primary production in inland and coastal waters and suspended 

matter transport and its impact on coastal ecosystems;  

• Monitoring of the distribution of sediments in tidal flats, wetlands, coral reefs and mangrove forests; 

and 

• Monitoring of coastal erosion and changes in coastal morphology.  

 3.4 Cryosphere 

Components of the modern cryosphere include snow, freshwater ice, sea ice, glaciers, ice caps, ice 

sheets, and permanently frozen ground (permafrost) and depend on a consistently cold mean state. 

Given that the greatest magnitude of warming is occurring in high-latitude and high-altitude regions, 

the modern cryosphere is particularly vulnerable to global change (IPCC, 2022). Rapid warming of the 

cryosphere also induces a range of complex feedback mechanisms resulting in cascading climatic, 

geomorphological, hydrological, and ecological changes (i.e., Post et al., 2009; Prevéy et al., 2017; 
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Wrona et al., 2016). These changes in turn can influence global carbon budgets and energy balance, 

biodiversity, infrastructure and socially and culturally important activities (see AMAP, 

https://www.amap.no/). Monitoring the state and changes of the cryosphere is hampered by a scarcity 

of in situ observations due to challenging logistics associated with the remote and complex terrain. 

Satellite observations represent a key tool to track and quantify changes to the cryosphere. Despite the 

environmental limitations of optical remote sensing in the Polar Regions (i.e., months of polar night, 

persistent cloud cover, and year-round low solar incidence angles), air and spaceborne hyperspectral 

data offer unique information on biogeochemical and -physical surface properties providing new insight 

into important input and enabling from data in space and time to derive terrestrial and aquatic energy, 

water, sediment, and carbon fluxes. 

3.4.1 Permafrost and Vegetation 

Permafrost is a sub-surface thermal phenomenon which cannot be directly observed by optical remote 

sensing. However, spectral indicators derived from optical remote sensing can be used to infer the state 

of permafrost by quantifying and monitoring various permafrost related features and processes. These 

processes and features can be broadly divided into five categories of atmospheric, hydrological, land 

surface, thermal, and subsurface (Philipp et al., 2021). To effectively monitor the state and vulnerability 

of permafrost ecosystems, detailed remote sensing data at regional to biome scales with regular 

temporal frequency is necessary. Though there are many limitations associated with optical remote 

sensing in the Polar regions, EnMAP will provide data at a spectral and spatial resolution to northern 

latitudes that is currently not available (PRISMA has a latitudinal limit of 70°N).  

The application of hyperspectral data in permafrost environments has increased significantly in recent 

years with greater availability and accessibility of field, drone-based and airborne sensors. For 

applications in heterogeneous permafrost environments, the high spectral resolution provided by 

hyperspectral data can capture the spatial variation in vegetation composition, structure and 

microtopography which in turn influence subsurface thermal regimes and related permafrost features 

and processes (Zhang et al., 2021). The identification and quantification of permafrost features and 

processes have most commonly been achieved using multispectral indices including NDVI. These 

include features and processes caused by rapidly thawing permafrost, drainage of lake basins, patterned 

ground and pingo development, frost heave, and ground subsidence after fire (Fraser et al., 2012; 

Jorgenson et al., 2015; Jorgenson and Grosse, 2016; Nitze et al., 2017; Rudy et al., 2013). Hyperspectral 

remote sensing has shown to be effective in capturing the high degree of spatial heterogeneity of 

seasonal active layer thickness (ALT) using modelling techniques (Zhang et al., 2021, 2020) as well as 

vegetation-active layer relationships (Anderson et al., 2019). Quantifying ALT is key to broadening our 

understanding of the influence of disturbance, hydrology and changing temperature regimes on 

permafrost. High spatial resolution airborne hyperspectral imagery has also been used to effectively 

identify and monitor methane hotspots across Arctic permafrost environments (Elder et al., 

2020).  Spaceborne imagers such as EnMAP with its high latitudinal limit and 30 m resolution will 

contribute greatly to better understanding methane and other carbon emissions in the Arctic (Miner et 

al., 2022) 

As with other vegetated surfaces, spectral indices have been used extensively to map and monitor 

vegetation status and change in permafrost environments (Beamish et al., 2020; Laidler and Treitz, 

2003; Stow et al., 2004). Time series analyses of NDVI and other vegetation indices using legacy 

multispectral platforms such as Landsat, AVHRR and MODIS are one of the most common applications 

of optical remote sensing in tundra landscapes (Beamish et al., 2020). These studies provide invaluable 

insight into the complex, non-linear changes in tundra productivity and growth in response to climate 

change (Bhatt et al., 2013; Myers-Smith et al., 2020). Multispectral remote sensing has also been used 

https://www.amap.no/
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to track a wide variety of vegetation phenomena including shrub expansion (Myers-Smith et al., 2011; 

Wookey et al., 2009) as well as vegetation disturbance and recovery from permafrost disturbance 

(Fraser et al., 2014; Walker et al., 2009), tundra fires (Jones et al., 2013), winter warming (Bokhorst et 

al., 2012), herbivory (Conkin and Alisauskas, 2017), and anthropogenic activities (Forbes et al., 2001). 

The derivation of taxonomical, biophysical, biochemical and phenological properties of Arctic 

vegetation has increased significantly with the rise in freely available remote sensing data (Beamish et 

al., 2020). Vegetation properties including biomass (Liu and Treitz, 2018; Raynolds et al., 2012), 

species composition (Macander et al., 2017), LAI (Williams et al., 2008), phenology (Zeng et al., 2013), 

and productivity (Shaver et al., 2013).  

The last decade has seen a great increase in the application of in situ and airborne imaging spectroscopy 

studies of vegetation in Arctic permafrost environments. Hyperspectral remote sensing data is 

recognized as a key tool to quantifying and monitoring heterogeneous Arctic vegetation properties and 

change. Buchhorn et al., (2013a) and Buchhorn et al., (2013b) provided a detailed examination of the 

spectro-directional reflectance properties in high-latitude tundra permafrost landscapes under changing 

illumination conditions, demonstrating that vegetation communities can be spectrally distinguished. 

Further studies have demonstrated the utility of ground-based imaging spectroscopy and simple 

narrowband indices to differentiate plant functional types (PFTs; Beamish et al., 2017; Bratsch et al., 

2016; Huemmrich et al., 2013) and to quantify photosynthetic pigment content (Beamish et al., 2018; 

Zagajewski et al., 2018) and biomass (Bratsch et al., 2017). Kennedy et al., (2021) applied the first 

physical-based inverse radiative transfer models and non-parametric modelling to in situ imaging 

spectroscopy data to estimate chlorophyll content and plant area index with moderate success. 

Taxonomic, biophysical and biochemical are important indicators of plant biodiversity, health and 

activity. Data from EnMAP will provide the first biome scale estimates of key vegetation properties in 

Arctic tundra landscapes. 

• Monitoring of the spatio-temporal dynamics of permafrost disturbances and ALT 

• Retrieval of surface thermal properties in permafrost landscapes 

• Identification of vegetation succession in disturbed permafrost landscapes 

• Retrieval of plant biophysical and biochemical plant properties in permafrost landscapes 

3.4.2 Snow & Ice 

Characterization of snow-covered areas and inland ice is critical for understanding the Earth’s 

hydrology, climatology, and ecology. This is because of the significant effect of snow-covered areas on 

the energy balance at the land-atmosphere boundary and their importance as fresh water sources 

(Tedesco et al., 2016). However, detailed ground-based measurements of snow and inland ice properties 

are scarce due to the remoteness, challenging and often dangerous logistics. Satellite-based imaging 

spectroscopy can be used to retrieve key inland snow and ice parameters. Distributed snow-surface 

energy-balance models need the following spatially distributed parameters that can potentially be 

provided by spaceborne hyperspectral remote sensing data: snow-covered area, snow albedo, grain size, 

snow water equivalent, liquid water content, and concentration of light-absorbing particles (LAPs), such 

as dust, soot, or algae (Dozier et al., 2009). Accurate measurements of these physical snow properties 

are also prerequisites to derive distributed hydrological models to quantify timing and magnitude of 

snowmelt runoff and its source areas. 

Snow albedo and snowmelt are directly linked to the growth of grain size (Warren and Wiscombe, 

1980). Snow reflectance decreases dramatically, especially in the NIR range, as the snow grains evolve 

after deposition. Liquid water inclusions of melting snow yield albedo reductions because liquid water 

in snow causes the grains to form clusters (Dozier et al., 2009). Repeated hyperspectral measurements 
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of snow enable us to quantify the evolution of albedo by accounting for various effects like grain size 

and LAPs. 

LAPs, including dust, soot, and algae, degrade snow reflectance significantly, especially in the VIS 

spectrum, by absorbing incoming radiation and at longer wavelength by increases in grain size through 

local microscale metamorphism (Di Mauro et al., 2020; Dozier et al., 2009; Flanner et al., 2007; Skiles 

et al., 2018). For example, an experiment that compared hyperspectral data to field-measured impurities 

showed good agreement between measured dust concentrations and snow reflectance (Tanikawa et al., 

2002). The extensive glacial debris cover, which characterizes most mountain glaciers, can be spectrally 

analyzed to decipher the origin and to improve glacial mapping as well as our understanding of glacial 

ablation and kinematics (Casey et al., 2012). 

Organic materials in snow and ice have more distinctive spectral features than inorganic LAPs 

(Takeuchi, 2002). Snow and glacier algae (e.g., Chlamydomonas nivalis, Mesotaenium 

berggrenii, or Ancylonema nordenskioldii) may be abundant on top of the snow and inland ice causing 

albedo to decrease. Their accumulation on the snow and ice surface appears in distinctive colors, such 

as green, red, brown, or purple, caused by pigment absorption which can be detected using multispectral 

satellite data (Gray et al., 2020; Takeuchi et al., 2006; Wang et al., 2020). However, deriving their 

concentration requires high-resolution imaging spectroscopy data that can resolve distinct carotenoid 

and chlorophyll absorption features (Painter et al., 2001). Bohn et al., (2021) recently presented an 

approach to simultaneously estimate atmosphere and surface constituents over glacier ice, including 

retrieval of grain size, liquid water content, and algae concentration. They validated algae mass mixing 

ratio, estimated from airborne AVIRIS-NG data, with one of the rare in situ samples and presented 

promising low residuals, which highlights the potential of hyperspectral measurements from space to 

both map and quantify organic cells and pigments in snow and ice. 

Because varying grain sizes and liquid water content as well as ablation of biological and inorganic 

LAPs translate into variability of spectral reflectance, multiple snow endmembers are necessary to 

characterize snow. Spectral mixture analysis can accurately represent the spatial distribution of snow 

(Nolin et al., 1993). Painter et al., (2003) improved subpixel snow mapping by allowing the spectrum 

of the snow endmember to vary to match the spectral shape of the pixel’s snow reflectance. The authors 

used hyperspectral airborne AVIRIS data to estimate both subpixel snow cover and grain size over a 

wide range of snow conditions in the Sierra Nevada. Rosenthal and Dozier, (1996) developed linear 

spectral mixture analysis for subpixel snow-covered area from Landsat. Although only based on 

multispectral data, they were able to map patchy snow cover several times during a season. This Landsat 

spectral mixing model was also used to map snow on glaciers. For example, Klein and Isacks, (1999) 

applied the spectral mixture analysis to identify the ablation and accumulation zones and the transient 

snowline on several tropical glaciers.  

Quantifying sea ice properties is of great importance because sea ice albedo is among the most crucial 

parameters that governs climate processes. In the context of the changing Arctic climate, the spatial 

distribution of sea ice melt and the length of the melt season is required to predict the role of sea ice 

cover in the radiative balance. Melt ponds change the radiative balance in the Arctic because they 

drastically reduce the ice albedo and increase the flux of absorbed energy, speeding up the melting 

process (positive feedback mechanism). Snow accumulation on the sea ice is one of the most critical 

variables in determining ice permeability and melt pond development (Eicken et al., 2004). 

Sediment-laden sea ice, or ‘dirty sea ice’, is a common phenomenon in the Arctic. Sea-ice sediments 

mainly consist of terrigenous sediments with clay minerals, quartz and feldspars (Nuernberg et al., 

1994). Due to surface melt, sediments accumulate at the surface of multi-year sea ice in concentrated 

layers of mud several millimeters thick. The quantification of sediment transport by sea ice presents a 

considerable challenge due to the patchy distribution of sediments and the overall difficulty in obtaining 
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data on the areal distribution and suspended particulate matter concentrations. Published quantitative 

estimates of sea-ice transported sediment loads differ significantly (Eicken et al., 2005). Lisitzin (2002) 

postulated that 10 to 50% of the total Arctic sea-ice area is covered by dirty sea ice.  

To assess changes in the Arctic energy budget, sea ice reflective properties, such as pure ice or ‘dirty 

ice’, snow, and melt pond coverage on sea ice must be quantified. These products can serve as inputs 

for Global Climate Models, hydrological models, and estimates of sediment flux on sea-ice. In addition 

to these applications, knowledge of the spectral properties of sea ice surface, such as the melt pond 

fraction, is useful for maritime navigation. Therefore, hyperspectral remote sensing potentially provides 

the different sea-ice albedo types, extracts melt pond fractions, maps the extent of particle-laden sea 

ice, and assesses its particulate loading. Perovich et al., (2007) refer to direct measurements of the 

anisotropic reflectance factor for snow covered, bare, and ponded sea ice. Huck et al., (2007) built a 

radiative transfer model for sea ice coupled with an optical model for particulates included in sea ice to 

model different sea ice surfaces of variable sediment load. They distinguish between different degrees 

of sediment loading and the melt pond fraction. Istomina et al., (2015) developed an algorithm to 

retrieve the melt pond fraction and different sea ice types from MERIS data and validated it against 

aerial, shipborne and in situ data. The developed algorithm is based on a newly developed optical model 

of sea ice reflection, accounting also for the bi-directional reflection from the ice/snow surface (Zege 

et al., 2015). This is particularly important for Polar Regions where the SZA is high. The results show 

the best correlation for land-fast and multiyear ice of high ice concentrations. The presented melt pond 

fraction and sea ice albedo retrieval needs various spectral bands in the VIS and NIR regions of the 

spectrum (Istomina et al., 2015; Zege et al., 2015). Bohn et al., (2022) demonstrated the potential of 

spaceborne imaging spectroscopy to characterize Arctic melt ponds using PRISMA data. Their 

approach proved valid in quantifying different water surface brightness, distinguishing turbid and clear 

water as well as identifying potential ice cover. Furthermore, even weak chlorophyll absorption by algae 

deposited on the melt pond surface could be resolved. 

Future snow and ice research will benefit from a synergistic data collection that combines fine spectral 

(EnMAP) and spatial resolution with sensors with a broad swath and daily coverage of the whole Earth 

(MODIS, Sentinel 3, VIIRS). Initial results from combining Sentinel 3 and PRISMA data show 

promising potential to develop comprehensive time series of biogeophysical snow and ice properties 

(Bohn et al., 2022). Envisioned applications include regular tests of medium-spatial resolution data with 

EnMAP and data fusion to improve mapping and monitoring of sea-ice types, snow cover on inland ice 

and sea ice, ice algae, sediment and dust on ice, melt pond fraction and evolution on inland ice and sea 

ice. In this context, the Greenland Ice Sheet should be a focal area of interest, since recent climate 

research confirms that it is the largest single contributor to global sea level rise (Bamber et al., 2018). 

EnMAP can contribute to an improved understanding of melt processes, which is essential to evaluate 

the associated impacts on climate change (Bohn et al., 2022, 2021; Stibal et al., 2017). 

The following main scientific tasks are related to snow and ice: 

• Development and improvement of new hyperspectral approaches to retrieve snow properties (e.g., 

albedo, grain size and near-surface liquid water, biological and inorganic LAPs) and spatial snow 

cover distribution;  

• Exploration of synergies to multispectral sensors with varying spatial scales to improve snow 

mapping in forests and adapt to angular variability; 

• Determination of the spatial and temporal variability of ponded ice spectral reflectance properties as 

a key parameter in determining the large-scale sea-ice albedo; and 
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• Determination of snow accumulation, melt pond areal fraction, and sediment load on sea ice to 

overcome problems associated with the significant spatial inhomogeneity observed and the fact that 

it occurs in largely inaccessible parts of the world's oceans. 

3.5 Urban areas 

The world is currently experiencing rapid urbanization and an increase in the number of megacities, 

particularly in developing countries. According to the United Nations Development Program, urban 

population growth will continue over the next decades, though at decreasing growth rates (UN, 2022). 

The process of urbanization always results in changes in land use and cover and causes serious 

problems, such as environmental pollution, destruction of ecosystems, and waste disposal. Urban areas 

are responsible for 75 % of the global CO2 emissions (UNEP, 2022). Reduction in vegetation cover 

due to urban expansion may result in desertification (Cherlet et al., 2018) and affect the quality of 

nearby surface water (Jordan et al., 2014). In addition to these climatic changes, urbanization impacts 

socioeconomic processes increasing per capita demand for energy, goods and services (Meyerson et al., 

2007). Land conversions, introduced by urban consumption patterns, have regional effects on the 

biophysical system that may lead to global consequences (Sanchez-Rodriguez et al., 2005). Thus, there 

is a critical need to map urban land cover composition and monitor urban growth. 

Remote sensing techniques are widely used to study urban environments. Although the use of airborne 

hyperspectral images has proven to be a valuable data source for urban hydrological, climatic and 

environmental studies (Franke et al., 2009; Heiden et al., 2012; Okujeni et al., 2013), spaceborne 

hyperspectral applications are comparably scarce (Cavalli et al., 2008; Weng et al., 2008; Xu and Gong, 

2007). This can be explained by the spectral and structural complexity of urban areas (Small, 2003, 

2001; van der Linden and Hostert, 2009) and the limited availability of repeat hyperspectral data 

acquisitions covering urban areas globally (Roberts et al., 2012). EnMAP hyperspectral data opens new 

opportunities to describe and monitor land cover composition in urban areas and along urban-suburban 

gradients assisting in the understanding of the dynamics of global urbanization (Heldens et al., 2011). 

Land cover classification schemes for urban areas are generally influenced by the scope of related 

studies (Heiden et al., 2007; Herold et al., 2004; van der Linden et al., 2019b). The advantage of EnMAP 

compared to multispectral sensors is the detailed spectral resolution of the data combined with a high 

signal-to-noise ratio. Given the 30 m ground sampling distance of EnMAP, urban mapping requires 

novel strategies to retrieve new compositional information about the urban surface. Information on 

urban surface materials is key to understanding climatic and hydrological processes in urban areas 

(Heldens et al., 2019). In a first proof-of-concept study, specific material compositions for typical 

densely built neighborhoods, industrial areas, commercial areas and residential districts have been 

detected based on simulated EnMAP data (Jilge et al., 2015). However, research questions remain about 

the robustness (Ji et al., 2022) and the transferability (Ji et al., 2021) of gradient analysis used initially 

for studies in natural environments (Feilhauer et al., 2011; Schmidtlein and Sassin, 2004).  

The spectral decomposition of land-cover composition at the sub-pixel level is another promising 

strategy to better characterize urban surfaces. Techniques such as spectral unmixing or regression 

modelling designed to deal with the spectral diversity and variability of urban surfaces have been 

successfully implemented using airborne data (Franke et al., 2009; Okujeni et al., 2013; Priem and 

Canters, 2016; Roberts et al., 2012; Roessner et al., 2001). New developments are needed to enable the 

use of spaceborne EnMAP data as input for such techniques. This would enable mapping of surface 

materials for various cities providing complementary information for existing surveys such as Local 

Climate Zone (LCZ) mapping, a concept especially developed for climate studies in urban areas 

(Stewart and Oke, 2012) 
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For both qualitative and quantitative analyses of urban areas, the development of reference spectral 

libraries is essential (Bieniarz et al., 2014; Heiden et al., 2012; Heldens et al., 2011; Herold et al., 2004; 

Jilge et al., 2015). There is a need to develop techniques to handle the spectral inter- and intra-class 

variability of urban surfaces. Up-and-coming methods such as spectral library pruning (Degerickx et 

al., 2017; Dennison and Roberts, 2003; Priem et al., 2021) and normalization of spectral indices (Ji et 

al. 2022b) have shown the value of spectral libraries for urban studies. The greatest challenge to this 

research is the need for extensive collaboration between international research groups (Canters et al., 

2021; Hueni et al., 2009; Rasaiah et al., 2011). Additional research on the spatial transfer of models to 

accurately map multiple urban areas is also needed (Canters et al., 2021; Okujeni et al., 2018). 

One essential application regarding urban planning is reliable mapping of imperviousness. This is a 

critical parameter as it can lead to flooding in heavily urbanized areas lacking permeable surfaces 

(Konrad, 2016). Within this context, approaches that combine qualitative and quantitative analyses 

appear most suited to make full use of the additional information from EnMAP. This additional spectral 

information will make approaches based on the V-I-S concept (vegetation - impervious surface - soil, 

(Lu and Weng, 2006; Ridd, 1995; Wu and Murray, 2003) more reliable and help to expand such models 

by differentiating built-up and non-built-up areas. The analysis of 18 m airborne and 30 m simulated 

spaceborne hyperspectral data indicates the potential for EnMAP to improve and expand V-I-S mapping 

compared to broadly available multispectral Landsat data (Okujeni et al., 2015a; Wetherley et al., 2018, 

2017). 

Reliable surface material indicators are needed for urban climate studies and other approaches that 

require knowledge on the biophysical properties of urban land cover. Remote sensing data is used more 

and more to study the urban climate at meso and macro scales. Especially physical properties of urban 

areas, such as reflection, absorption, emissivity, specific heat capacity, but also height and spatial 

arrangement of urban objects, are needed to parameterize climate models (De Foy et al., 2006; Jin et 

al., 2007; Yang, 2000). Spaceborne hyperspectral EnMAP data will have the potential to provide this 

information (Okujeni et al., 2015b) on an operational basis. However, suitable concepts are needed to 

derive urban ecological indicators (Behling et al., 2015) and to integrate the surface information into 

urban climate models and methodological gaps currently exist for spatial upscaling techniques 

preserving spectral information content (Dian et al., 2021). Overall, the synergistic use of hyperspectral, 

thermal, and optical data with advanced data analysis techniques may result in enhanced socioeconomic 

and environmental indicators to model urban dynamics and their social and environmental 

consequences. 

Accordingly, main scientific tasks related to urban areas include:  

• Mapping and monitoring of urbanization and its dynamics with high spectral detail worldwide;  

• Development of comprehensive urban spectral libraries for universal urban land-cover mapping 

based on EnMAP data; 

• Development and improvement of classification algorithms to quantify urban land cover, including 

classes that are spectrally ambiguous in multispectral data; 

• Investigation of new concepts for information extraction based on spectral mixtures;  

• Application and extension of the V-I-S concept to produce biophysical surface maps with respect to 

the needs of urban environmental process models, e.g., on urban climate and hydrology; and 

• Mapping of the abundance of hazardous materials such as asbestos, e.g., in the context of risk 

analyses.  
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3.6 Atmosphere 

Though EnMAP is not specifically designed for atmospheric research, variables that describe 

atmospheric conditions and atmospheric constituents can be retrieved from EnMAP data. EnMAP is 

well suited to retrieve concentrations of gases with absorption features in the NIR and SWIR regions of 

the spectrum like methane, carbon dioxide, and water vapor, whose detection and quantification are key 

to climate change mitigation efforts. The reduction of methane emissions from the fossil fuel industry 

is considered the most effective way to slow global warming in the next decades. Methane emissions 

from fossil fuel activities typically occur as plumes from point sources such as wells, compressor 

stations, storage tanks, flares, and mining vents. Imaging spectrometers that include the SWIR, offer an 

appropriate spectral and spatial configuration to map methane plumes. Methane mapping using imaging 

spectrometers started at the airborne scale with AVIRIS data (e.g., Duren et al., 2019; Frankenberg et 

al., 2016; Thorpe et al., 2017), but recent rapid developments have extended it to the satellite scale. The 

first maps of methane plumes with spaceborne imaging spectrometers were derived from EO-

1/Hyperion during the Aliso Canyon massive methane blowout (Thompson et al., 2016). Later, a 

theoretical assessment of the potential of next generation satellite imaging spectrometers for methane 

mapping, with an emphasis on EnMAP, was presented by Cusworth et al., (2019). Currently, the Italian 

PRISMA mission is the main source of spaceborne imaging spectroscopy data for methane mapping. 

PRISMA data are being used to detect methane emissions from oil and gas extraction and coal mining 

activities all over the world (Guanter et al., 2021). The Chinese GF-05 AHSI and ZY1-AHSI imaging 

spectroscopy missions have also shown potential for methane mapping (Irakulis-Loitxate et al., 2021), 

but in general data are not accessible for scientists outside of China. The availability of EnMAP data 

increases our ability to detect methane emissions from point sources globally. EnMAP will likely join 

PRISMA as part of the International Methane Emissions Observatory (IMEO) being developed by the 

United Nations Environment Program (see Section 1.5). 

The application of imaging spectroscopy to detect carbon dioxide emissions is less developed, but there 

are studies showing the feasibility of carbon dioxide mapping from both AVIRIS (Thorpe et al., 2017) 

and PRISMA (Cusworth et al., 2021). PRISMA data were used to detect and quantify carbon dioxide 

emissions from four coal-fired power plants around the world. Considering the similar spectral and 

spatial sampling of PRISMA and EnMAP, it is expected that carbon dioxide mapping will also be 

possible with EnMAP. 

Finally, atmospheric water vapor is important for many environmental applications because it 

constitutes one of the most effective greenhouse gases in the atmosphere. It shows a high-spatial and 

temporal variability, depending on meteorological conditions and land use. Information on the regional 

distribution of atmospheric water vapor may facilitate the analysis of SAR data, because the radar signal 

transit time depends on atmospheric conditions. A few algorithms for the retrieval of columnar water 

vapor content from hyperspectral remote sensing data have already been developed (e.g., Barducci et 

al., 2004). 

In addition to greenhouse gases, EnMAP can also contribute to the monitoring of atmospheric 

constituents such as mineral dust and particulate matter clouds originating from sandstorm areas or 

biomass-burning. The mineral composition of transported dust is essential to better understand climate 

forcing, mineralogy of dust sources, aerosol optical properties, and mineral deposition to the surface. 

Furthermore, the differentiation of spectral signals from the ground and from mineral dust may allow 

separating atmospheric influences from the actual ground signal by determining their mineral 

composition. Chudnovsky et al., (2009) showed that the absorption signature of suspended dust could 

be decoupled from scattering, allowing detection of key minerals. This work would benefit from 
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collaboration with the EMIT imaging spectroscopy mission, designed to measure the mineral 

composition of the Earth’s arid land dust source regions. 

Finally, Thompson et al., (2018) used long-term imaging spectroscopy data from the Hyperion mission 

to produce a global survey of cloud thermodynamic phase (distribution of ice, liquid, and mixed phase 

clouds). EnMAP could also be used to continue this line of research. 

Accordingly, scientific tasks related to atmospheric applications include:  

• Development of a retrieval algorithms for the retrieval of methane concentration enhancements from 

EnMAP observations;  

• Estimation of figures on the detection limit and total accuracy of EnMAP methane retrievals; 

• Development of a retrieval algorithms for the retrieval of carbon dioxide concentration 

enhancements from EnMAP observations;  

• Estimation of figures on the detection limit and total accuracy of EnMAP carbon dioxide retrievals; 

• Development and improvement of algorithms to retrieve columnar water vapor based on 

hyperspectral data;  

• Development and improvement of algorithms to characterize mineral dust, and particulate matter 

clouds; and 

• Development and improvement of algorithms to separate cloud thermodynamic phases. 

3.7 Hazards and Risks 

EnMAP data will improve identification and monitoring of both natural and man-made hazards as well 

as vulnerability and risk. Overall, the main benefit of hyperspectral data lies in their potential for a more 

detailed, material-oriented characterization of factors contributing to hazards. 

3.7.1 Landslides  

In mountainous areas, landslides of various forms and composition impose a constant threat to local 

communities and infrastructure. Remote sensing has long been used to improve landslide inventories 

(Guzzetti et al., 2012) and hazard assessments (Guzzetti et al., 2005) and improve characterization of 

driving factors (Behling et al., 2016, 2014; Metternicht et al., 2005; Scaioni et al., 2014). Hyperspectral 

remote sensing can further improve the characterization of the driving factors of landslides and other 

hazards. This includes a better characterization of lithological conditions and improved identification 

of inhomogeneities within landslide-prone slopes, which indicate increased potential for the onset of 

slope failures. Hyperspectral data also improve characterization of landslide deposits including their 

revegetation over time. A better characterization of active, unstable slopes like debris-covered areas, 

fractured/disjointed rock walls, landslide accumulation borders and individual structural features and 

landforms, such as major faults and fractures, trenches, elongated depressions, and counter slope scarps 

can be accomplished with hyperspectral data (Borgogno Mondino et al., 2009). So far, the application 

of hyperspectral data to landslides has been limited due to data availability. In Ye et al., (2019) EO-

1/Hyperion data were used to investigate the potential of hyperspectral data for automated post-failure 

landslide detection representing only one of the many potential future applications for hyperspectral 

data in the diverse field of landslide research. 
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3.7.2 Swelling soils 

Expansive clays and clay-shales cause costly damages world-wide every year. The reported instances 

of heaving indicate that the problem of expansive soils is widespread across the five continents, mostly 

confined to semi-arid regions of the world (Chen, 1988). Soil spectroscopy has been shown to be a 

useful tool for evaluating the expansive potential of soils (e.g., Goetz et al., 2001). Hyperspectral remote 

sensing, with its potential for direct identification of constituent minerals in soils, can facilitate detection 

and mapping of expansive clays in different locations and at different spatial scales (e.g., Chabrillat et 

al., 2002; Kariuki et al., 2004). Accurate identification and spatial distribution of heaving soils will 

provide practical help to manage this global hazard. 

3.7.3 Floods  

Many riverine and coastal areas in the world are threatened by flooding caused by rainstorms, snowmelt, 

cyclones, tidal waves or dam-failures. A major challenge related to flood monitoring is the timely 

detection and the broad regional extent. Consequently, satellite remote sensing has been extensively 

used since the 1970s to detect and monitor floods allowing for a more rapid emergency response, 

assessment of damaged areas, and study of water quality changes (Ip et al., 2006). Though the temporal 

resolution of EnMAP may not facilitate information relevant to emergency response, spaceborne 

hyperspectral remote sensing has proven to be particularly suited to estimating soil contamination in 

floodplains (e.g., Goetze et al., 2010). 

3.7.4 Droughts 

Droughts can have a substantial impact on the ecosystems and agriculture of the affected areas. Large-

scale agricultural losses resulting from drought can have local to global socioeconomic implications in 

the form of income loss and increasing commodity prices (Simelton et al., 2012; Ubilava, 2012). In 

general, drought periods lead to an increased fire susceptibility and tree mortality, and carbon uptake 

decreases significantly (Asner et al., 2000; Nepstad et al., 1999; Williamson et al., 2000). Spaceborne 

imaging spectroscopy has high potential for applications of climate–vegetation interactions by detecting 

the state of vegetation at regional scales (Asner et al., 2004). Such ecosystem studies may yield an 

increased accuracy of ecological models and could result in drought-prevention measures for 

agricultural areas. 

3.7.5 Volcanoes 

In concert with seismic and geodetic measurements, hyperspectral information on volcanic debris flows, 

pyroclastic materials, and gas emissions are fundamental to the understanding of eruptive systems 

(Crowley et al., 2003; Tralli et al., 2005). Hyperspectral information may provide valuable insights into 

volcanic activity (Cipar et al., 2011; Gabrieli et al., 2019), processes (Kereszturi et al., 2020, 2018), and 

properties (Schaefer et al., 2021). The increase in regional and globally available hyperspectral data is 

promising for applications in volcanology including material mapping which can influence volcanic 

stability and in turn provide relevant information for disaster management strategies. 

3.7.6 Land degradation and soil erosion  

Deterioration in soil and plant cover has adversely affected nearly 70 % of the world's dry lands, which 

cover approximately one third of the continental surface of the Earth. These facts led to the ratification, 

of the UN Convention to Combat Desertification by almost 200 nations (UNCCD, 1994), which 

emphasizes the need to monitor and assess land degradation processes worldwide. Combating 

desertification requires accurate and up-to-date knowledge of land-degradation status and the 

magnitude of the potential hazard. It is widely agreed that accelerated erosion is one of the most 
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important sources of land degradation that, together with the destruction of vegetation cover and 

structure, contributes to further land degradation and desertification (Pickup, 1989). 

EnMAP data can assess the degree of land degradation by retrieving important variables that control 

susceptibility to soil erosion, such as soil compaction, surface roughness, infiltration rate, and soil 

moisture (Haubrock et al., 2005, 2008). Due to distinct topsoil characteristics, soils previously affected 

by erosion can be spectrally distinguished from intact soils (Demattê et al., 2000), and soil erosion and 

deposition stages can be mapped with hyperspectral remote sensing (Schmid et al., 2016). Another 

manifestation of soil degradation is increased salinity, which is commonly caused by rising water tables 

induced by land clearing or irrigation. In this case, imaging spectroscopy proves to be an effective tool 

for inferring the degree of soil salinity as indicated by the shape of the hydroxyl absorption feature at 

2200 nm and by the presence of indicator minerals such as gypsum or smectite (Taylor, 2004; Tucker 

et al., 2001). Further applications to investigate land degradation based on hyperspectral imagery 

include the analysis of spatial patterns and temporal dynamics of desertification (Asner and 

Heidebrecht, 2005) as well as the identification and mapping of dry senescent vegetation cover in arid 

areas (Chabrillat, 2006). Overall, EnMAP will create assist agricultural land use practices to combat 

land degradation and soil erosion processes. 

3.7.7 Oil spills  

Crude oil exhibits several diagnostic absorption features within the VNIR to SWIR spectrum. The most 

prominent are a triplet between 1700 and 1770 nm and a doublet between 2290 and 2360 nm, which 

are retrievable with EnMAP data (Lammoglia and Filho, 2011). Imaging spectroscopy has been 

routinely employed to detect and quantify the occurrence of petroleum in the environment arising from 

natural oil seeps (typically emanating from petroleum accumulation) and anthropogenic spills resulting 

from accidents (and illegal discharge) during the extraction, transportation, storage, and utilization by 

modern society. In the offshore (marine) environment, the detection of oil spills is dominated by SAR 

technology, but the identification of oil type and thickness of oil spills imaging spectroscopic data is 

needed (Leifer et al., 2012). In the terrestrial (onshore) environment the detection and characterization 

of petroleum relies on remote sensing data provided by either multispectral (Asadzadeh et al., 2022b) or 

hyperspectral instruments (Kokaly et al., 2013b). The arrival of EnMAP with a high signal-to-noise 

ratio is expected to open a new era of petroleum remote sensing. This includes direct detection and 

characterization of petroleum on-, and offshore, assessment of impacted ecosystems by oil spills, 

analysis of the health conditions of plants in petroleum-affected areas, and finally monitoring of the 

effectiveness of mitigation programs (Asadzadeh et al., 2022a). 

3.7.8 Marine litter  

The pollution of marine and coastal environments with plastic marine litter has been identified as a 

long-term hazard for ecosystems (Galgani et al., 2010; UNEP, 2009). Continually increasing disposal 

and low degradation rates of plastics (on the order of centuries) results in ever-increasing litter 

accumulation. Marine litter causes harm by entanglement of and ingestion by marine organisms (e.g., 

fishes, seabirds) (Gregory, 2009). Because persistent toxic substances, such as organochlorines (e.g., 

PCB, DDE, DDT) accumulate at high concentrations on the surface of plastics (e.g., Mato et al., 2001; 

Ogata et al., 2009), the ingestion of plastics by marine organisms represents the entry point of those 

substances into the food chain (e.g., Bjorndal et al., 1994; Boerger et al., 2010; Eriksson and Burton, 

2003; Graham and Thompson, 2009). However, whether there is enrichment or depletion within the 

food chain is subject to on-going research (Zarfl et al., 2011). Despite a basic understanding of principle 

sources and sinks of plastic pollution, a detailed assessment of their quantities and transport pathways 

is still lacking (Conesa, 2022; Zarfl et al., 2011). The monitoring marine litter has been listed as a 

https://www.amap.no/
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mandatory task in the Marine Strategy Framework Directive (MSFD-indicator 10.1.3). At the EU and 

global level, guidelines have been compiled for monitoring best practices (Cheshire, 2009; JRC, 2013). 

Given that imaging spectroscopy can identify marine plastics (e.g., Kuriyama et al., 2002; Thompson 

et al., 2004), EnMAP has the potential to contribute to the localization of major pollution sources, sinks 

and pathways of marine litter. A potential application to localize marine litter is related to natural 

hazards like tsunamis and floods that transport large amounts of artificial materials into the marine 

environment. A major challenge in such a scenario is the timely acquisition and analysis of remote 

sensing images, which requires rapid tasking and the development of efficient image processing chains 

for a near-real-time support to reduce dispersion and enable the removal of marine litter. 

3.7.9 Illegal waste dumping 

The steadily growing problem of illegal waste dumping is a prioritized field in the European 

Commission’s Communication on “EU actions to improve environmental compliance and governance”, 

which explicitly suggests the use of satellite data as a potential solution (European Commission, 2018). 

It is estimated that illegal dumping costs the EU member states €72-90 billion in clean-up costs and lost 

revenues each year (Purdy, 2018) and poses considerable health and environmental risks. 

Unmanaged or illegal dump sites can vary in size and shape, originate from different sources (e.g., 

construction waste, household waste, e-waste) and consist of different materials (e.g., plastic, car tires, 

metal, bricks, concrete). They range from small dump sites found along roads or rivers to mountains of 

plastic waste such as those found in Southeast Asia and Africa. The variability in the characteristics of 

illegal dumping sites, as well as their spectral similarity to construction sites and sand, clay, and gravel 

extraction sites represents a challenge to automated detection by remote sensing. 

Recent demonstration projects on illegal waste detection by satellite data are limited and mostly based 

on single acquisitions of very high spatial resolution commercial imagery. The open data from the 

Copernicus Sentinel missions as well as PRISMA and EnMAP offer new opportunities for regular, 

global detection of illegal waste to a wide community of users such as environmental agencies 

worldwide, especially in developing countries. Imaging spectroscopy and chemometrics have the 

potential to identify the material composition of illegal waste to operationalize automatic classification 

and provide information on the hazard classification and necessary protection and disposal measures 

prior to an on-site inspection. 

3.7.10 Industrial and mine waste and environmental rehabilitation 

The extraction of natural resources is frequently associated with environmental degradation due to the 

dispersion of potentially toxic substances. Numerous abandoned mines (e.g., open pit coal, copper and 

gold mines) have left an environmental legacy of acidic drainage and toxic metals in downstream 

watersheds with adverse effects on human and ecosystem health (Swayze et al., 2000). Acid mine 

drainage is typically derived from an enhanced sulfide hydro-oxidation process related to an increased 

effective surface of the crushed/milled rocks during the mining process. Sulfuric acid can enter the food 

chain through contaminated soils and water, which can ultimately result in the collapse of wetlands 

(McCarthy et al., 2007) and the decline of ecosystem health in general (Wepener et al., 2011). Technical 

accidents or illegal dumping can release toxic industrial waste and contaminate the surrounding 

environment (Mattila et al., 2022b; Minh et al., 2003; Okoronkwo et al., 2009; Wong et al., 2007). 

Imaging spectroscopy can effectively identify contaminants and determine the sources and impacts on 

the water cycle and vegetation health (Clark et al., 2003; Kemper and Sommer, 2004) Today, many 

countries are strengthening legislation to enforce environmental protection and to implement 

rehabilitation measures (MMSD, 2002). 

https://www.amap.no/
https://www.amap.no/
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Hyperspectral remote sensing can be used to track the shape and wavelength minimum of key pH-

sensitive secondary iron oxides and sulfate minerals (e.g., jarosite, copiapite, schwertmannite, 

ferrihydrite, and goethite) in the tailing environment. This enables pH mapping of areas affected by acid 

mine drainage (Ong et al., 2003b; Swayze et al., 2000; Zabcic et al., 2014), thus accelerating site clean-

up and reducing the associated costs (EPA, 1998)This technology can be used to predict the potential 

sources of acid mine drainage discharge as well as the acid neutralization capacity of geologic materials 

including carbonate minerals in the environment. In a similar manner, the hydrochemical parameters of 

mining lakes can be monitored using imaging spectroscopic data (Gläßer et al., 2011). Minerals of 

environmental concern such as asbestos, which occur naturally in ultramafic rocks and/or arise from 

anthropogenic sources can be detected using EnMAP data (Swayze et al., 2009). The spectroscopic 

content of the data can predict heavy metal content and map chemical wastes and residues around active 

and abandoned mining sites (Choe et al., 2009; Kasmaeeyazdi et al., 2021; Mars and Crowley, 2003; 

Pfitzner et al., 2018). Imaging spectroscopy can also quantitatively measure dust derived from mining 

activities in neighboring areas (Ong et al., 2003a). From an economic perspective, mine wastes contain 

large quantities of high value metals, which can be assessed using imaging spectroscopic data 

(Gascueña, 2020). EnMAP has the potential to become an efficient operational tool to map and monitor 

both the geoenvironmental of waste materials as well as the progress made in the rehabilitation of 

affected sites during the life cycle of a mine. 

The following main scientific tasks are related to hazards and risks:  

• Monitoring of tectonic, lithological and soil parameters for better characterization of factors 

predisposing landslide formation to improve hazard assessments; 

• Detection and mapping of swelling soils occurrences to assess swelling potential and to improve 

hazard assessment and application of adequate countermeasures; 

• Detection and monitoring of flood occurrences to assess flood risks, damaged areas, and water 

quality; 

• Monitoring of the state of vegetation during drought periods to improve the accuracy of ecological 

models and to develop drought-preventive measures for agricultural areas;  

• Investigation of volcanic systems with regard to their crater types, lava flow types and volcanic 

deposits to improve risk assessment and evacuation measures; 

• Monitoring land degradation processes (erosion and deposition) by providing regular maps of 

vegetation distribution and characteristics (considering highly variable background substrates) and 

soil status, such as organic matter (TOC), CaCO3, iron content, infiltration rate, salinity, and 

physical crusting development;  

• Identification and quantification of various soil contaminants through their specific spectral 

signatures or indicators (e.g., bio-indicators based on eco-toxicological effects on vegetation) linked 

to change in chemical composition of the polluted soil; 

• The detection limit of oil at the spatial resolution of EnMAP; 

• A better understanding of the complex spectral behavior of petroleum in mixture with water in 

maritime and soil of different mineralogical and physical properties on land surfaces; 

• A robust technique for identification of oil-type under variable background conditions; 

• Identification of sources, sinks and pathways of marine litter during large-scale plastics discharge 

events;  

• Monitoring of mining sites for their sustainable management; and 
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• Monitoring and quantification of the distribution of toxic materials in waste dumping sites and assess 

the degree of environmental contamination and the success of remediation strategies.



4 Scientific exploitation strategy  

   

EnMAP Technical Reports: EnMAP Science Plan, doi:10.2312/enmap.2016.006  45 

 

4 Scientific exploitation strategy 
In the preparatory phase of the EnMAP mission, a considerable effort was dedicated to developing tools 

for data processing, to inform and train users of EnMAP data and to foster an expert user community 

to ensure full exploitation of the information content of EnMAP data (Foerster et al., 2016). Following 

the successful launch of EnMAP in April 2022, scientific mission and user support continues. This 

chapter provides a brief overview of the various activities. 

4.1 Information and training 

The primary source of information about the EnMAP mission is available on the mission website 

(www.enmap.org). A mailing list was also established to disseminate EnMAP-specific news and 

announcements. As of October 2022, the list has more than 250 subscribers from research institutes and 

universities, public authorities and companies. More information on the mailing list and a contact form 

can be found at https://www.enmap.org/contact/. Key documents of the EnMAP mission, targeting the 

scientific community and general public are listed in Table 2.  

 

Table 2: Key documents of the EnMAP mission. Documents are regularly updated throughout the mission.  

Document Author Target group Language Objectives Availability 

EnMAP Science 

Plan 
PI, EnSAG Scientists, 

funding 

agencies, 

stakeholders 

and public 

authorities 

English EnMAP mission overview, 

scientific potential and 

exploitation strategy 

www.enmap.org 

(2022) 

EnMAP flyer PI, EnSAG General public English/ 

German 
Brief information about 

mission, objectives and 

application fields 

www.enmap.org 

(2022) 

EnMAP booklet PI, EnSAG General public English/ 

German 
Illustrated overview about the 

mission and its main 

application fields 

www.enmap.org 

(2022) 

      

EnMAP 

Algorithms 

Theoretical 

Baseline 

Documents 

(ATBDs) 

Ground 

segment 
Users of 

EnMAP data 
English Detailed information on 

algorithms and databases used 

by the ground segment for 

data processing for L1B, L1C, 

L2A land, L2A water 
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User Manual 
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Users of 

EnMAP data 
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request flow and data access 

www.enmap.org  

      

The EnMAP 
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Imaging 

Spectroscopy 

PI, EnSAG Users of 

EnMAP data 
English Overall mission overview. 
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(2015) 
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Mission for 

Earth Observation 

Environmental 

Mapping and 

Analysis Program 

– A German 

Hyperspectral 

Mission 

PI, OHB, 

EnSAG 
Users of 

EnMAP data 
English Detailed technical description Kaufmann et al. 

(2016) 

Special Issue: 

Exploring the 

Earth System with 

Imaging 

Spectroscopy in 

Surveys in 

Geophysics 

EnMAP 

science 

team, ESA 

and 

cooperation 

partners 

Science 

community 

interested in 

imaging 

spectroscopy 

English Collection of papers on the 

state of the art of imaging 

spectroscopy 

Editors: Foerster, 

Guanter, Lopez, 

Moreno, Rast, 

Schaepman 

(2019) 

 

 

EnMAP workshops and training schools are organized as part of the EnMAP science program (see list 

of past and upcoming events at https://www.enmap.org/events_education/). EnMAP user workshops 

and organized conference sessions are held regularly to inform about the progress of the mission, 

present and discuss EnMAP-related research, and to raise awareness of the mission. During the 

operational phase of the mission, a bi-annual EnMAP user workshop will be held, alternating with the 

EARSeL imaging spectroscopy workshop. EnMAP training schools have been organized by the 

EnMAP science team since 2010, with lectures, hands-on training as well as lab and field visits. In 

2019, the first EnMAP-Box workshop took place addressing PhD students and postdoctoral researchers 

interested in applying and developing EnMAP-Box algorithms. 

4.2 HYPERedu online learning initiative 

With the successful launch of EnMAP there is an increasing interest in hyperspectral data analyses. 

However, hyperspectral analyses require extensive training and educational resources on imaging 

spectroscopy are scarce, especially online learning platforms. To address this need, HYPERedu was 

developed in 2019 as part of the EnMAP science program. 

HYPERedu is an online learning initiative for hyperspectral remote sensing. It provides online learning 

resources on principles, methods and applications of imaging spectroscopy at a master’s level 

addressing students as well as professionals in research, business and public institutions. The resources 

include annotated slide collections and hands-on tutorials (based on the EnMAP-Box software) that are 

continuously updated and expanded and increasingly used in training courses as well as university 

teaching (Fig. 6).   

Within HYPERedu a series of MOOCs (Massive Open Online Courses) are also being developed. A 

first MOOC on the basics of imaging spectroscopy titled “Beyond the Visible: Introduction to 

Hyperspectral Remote Sensing” was successfully launched in November 2021. It teaches the principles 

of imaging spectroscopy, sensor technologies and data acquisition techniques as well as data sources 

and software using state-of-the-art eLearning approaches. The course is structured in three thematic 

lessons and offers interactive activities such as interactive graphics, quizzes and expert-led, hands-on 

training exercises. It is designed to be completed in five to eight hours at the participants own pace. 

After successful completion, participants receive a certificate. This basic course is complemented by 

several shorter follow-up MOOCs from 2022 onwards that focus on specific hyperspectral data 

application fields such as agriculture, soil and geology and urban environments. 

https://www.enmap.org/contact/
https://www.enmap.org/events_education/training
https://www.enmap.org/events_education/
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Fig. 6: HYPERedu learning resources overview 

All resources and courses are hosted on the EO-College platform (https://eo-college.org/) and provided 

free of charge under a CC-BY license, except where otherwise noted. EO-College is a learning hub for 

online courses, open educational resources and discussion forums in the field of Earth Observation and 

funded by the German EO program of the DLR Space Agency.  

Even though HYPERedu was initiated as part of the EnMAP science program, it is regarded as an 

initiative by and for the entire hyperspectral community: An increasing number of groups are already 

contributing to the development of HYPERedu and all resources are provided free of charge for use in 

training courses, university teaching or individual learning to increase the number of users employing 

hyperspectral data in the future.  

4.3 EnMAP-Box 

Full exploitation of the spectral information content of EnMAP data requires state-of-the-art image 

processing approaches for all users and application fields. The EnMAP-Box was developed targeting 

both novices as well as experienced users and offers basic processing and visualization functionality as 

well as advanced approaches for image analysis. The open-source code can easily be expanded and 

modifies for individual applications. This facilitates the exchange and centralized distribution of the 

latest developments within the EnMAP user community. From the very beginning, the conceptual 

development of the EnMAP-Box was driven by the following objectives: 

• User-friendliness: achieved by an intuitive graphical user interface (GUI) (Fig. 7), focusing on the 

handling and visualization of data with high-spectral dimension, GUI-based application of machine 

learning algorithms or advanced methods such as RTM, common and flexible file formats, basic 

tools optimized for imaging spectroscopy data and quantitative assessments; 

• Comprehensiveness: the set of available tools and applications as well as interfaces to scripting 

languages make the constant switch between different software obsolete; 

https://eo-college.org/
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• Standardization: the implementation and use of applications is standardized to assist external 

developers and provide the users a common look-and-feel, which also constitutes a key component 

of user-friendliness; and 

• Addressing external developers: availability of well-documented source code and an application 

programming interface (API). 

Since 2017, the EnMAP-Box consists of a registered plugin for the free and open source QGIS. This 

way, it combines custom-made processing algorithms for imaging spectroscopy data analyses with full 

GIS functionality. Besides general approaches for imaging spectroscopy, the EnMAP-Box includes 

advanced applications for atmospheric pre-processing over land and water, processing suites for 

agricultural applications, for geological mapping and for soil analysis. 

To integrate data from different sources, the EnMAP-Box offers custom import options for most 

hyperspectral and the most relevant multispectral sensors. 

 

Fig. 7: Graphical user interface of the EnMAP-Box 3, showing simulated EnMAP data linked to map view with 

very high-resolution data and a vector layer, as well as the associated spectral library viewer. 

4.4 EnMAP preparatory flight campaigns and in situ data 

During the EnMAP scientific preparatory program, many hyperspectral airborne flight campaigns were 

carried out to support a wide range of scientific applications and algorithm development. Campaign 

data were used to evaluate the performance of variable retrieval, synergies with other sensors, 

development and testing of image processing algorithms and calibration/validation methods (Guanter 

et al., 2015). In addition, the datasets were input for EnMAP end-to-end scene simulations (see section 

4.5). 

At several test sites multi-seasonal acquisitions were acquired to support temporal analyses. 

Furthermore, acquisitions at different flight altitudes were obtained facilitating spatial scaling studies. 

For some campaigns, simultaneous data collection from other sensors (e.g., LiDAR) was conducted to 

enable multi-sensor studies. Most campaigns were accompanied by extensive ground sampling to 
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calibrate and validate the airborne data acquisitions. All datasets are freely available to the scientific 

community as DOI-referenced data publications under a Creative Commons License along with data 

reports (EnMAP Technical Reports), describing in detail how the data were acquired, and pre-processed 

and which ground truth and additional data are available. An overview of all available datasets is 

provided in the EnMAP campaign portal (https://www.enmap.org/data_tools/flights/). In addition to 

campaign data, several field guides developed within the mission’s scientific preparatory program are 

available as EnMAP Technical Reports on the EnMAP website. 

4.5 EnMAP end-to-end scene simulations   

Preparatory activities involved the simulation of the entire image generation and processing chain using 

the EnMAP end-to-end scene simulator (EeteS; (Segl et al., 2012). EeteS is comprised of four main 

modules (atmospheric, spatial, spectral, and radiometric) to generate EnMAP-like raw data and is 

capable of simulating EnMAP-like data products using a L1B, L1C and L2A processor. These simulated 

data were important for the optimization of fundamental instrument configurations, allowing the effect 

of parameter changes to be tested using simulated benchmark datasets. In addition, these datasets 

supported the development and evaluation of data pre-processing algorithms as well as testing of new 

algorithms for the scientific exploitation of future EnMAP data. Tools for geometric alignment of 

EnMAP to co‐existing Earth observation missions were developed that facilitated synergetic use with 

Sentinel-2 data. Sample datasets generated with EeteS were provided upon request to scientific users.

https://www.enmap.org/data_tools/flights/
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List of abbreviations 
 

The EnMAP mission team has built up a Glossary of Terms and Abbreviations that comprises 

contributions from many team members and is continuously updated and extended. The glossary is 

publicly available at http://www.enmap.org/mission. 

 

Abbreviation Full Name 

AERONET Aerosol Robotic Network 

AHSI Advanced Hyperspectral Imager 

AHSI Advanced Hyperspectral Imager 

AI Artificial Intelligence 

AIS Airborne Imaging Spectrometer 

AISA Airborne Imaging Spectrometer for Applications 

ALI Advanced Land Imager 

ALT Active Layer Thickness 

APAR Absorbed Photosynthetically Active Radiation 

APEX Airborne Prism Experiment 

API Application Programming Interface 

ASI Agenzia Spaziale Italiana 

ASTER Advanced Spaceborn Thermal Emission and Reflection Radiometer 

ASTM American Society for Testing and Materials’  

ATBD Algorithms Theoretical Baseline Documents  

AVIRIS Airborne Visible Infrared Imaging Spectrometer 

AVIS Airborn Visible/Infrared Imaging Spectrometer 

BOA Bottom Of Atmosphere 

BRDF Bidirectional Reflectance Distribution Function 

CAL/VAL Calibration/Validation 

CARD4L CEOS Analysis Ready Data for Land 

CASI Compact Airborn Spectropgraphic imager 

CBD Convention on Biolgical Diversity 

CBD Convention on Biological Diversity 

CBERS China–Brazil Earth Resources Satellite 

CEOS Committee on Earth Observation Satellites  

CHIME Copernicus Hyperspectral Imaging Mission for the Environment 

CHRIS Compact High Resolution Imaging Spectrometer  

CNES Centre National d’Études Spatiales 

DDE Dichlorodiphenyldichloroethylene 

DDT Dichlorodiphenyltrichloroethane 

http://www.enmap.org/mission
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DEM Digital elevation model 

DESIS DLR Earth Sensing Imaging Spectrometer 

DG Director General 

DL Deep Learning 

DLR German Aerospace Agency 

DLR EOC Earth Observation Center 

DLR GSOC German Space Observation Center 

EARSeL European Associatoin of Remote Sensing Laboratories 

EBV Essential Biodiversity Variables 

EeteS EnMAP end-to-end scene simulator 

EIT EnMAP Insturment Planning 

EMIT Earth Surface Mineral Dust Source Investigation 

EnMAP EnVironmental Mapping adn Analysis Program 

EnSAG EnMAP Science Advisory Group 

EnSAG EnMAP Science Advisory Group 

ESA European Space Agency 

FAO Food and Agricultural Organization of the United Nations 

fAPAR Fraction of Absorbed Photosynthetically Active Radiation 

FEC Future Earth Coasts 

FLI Forward Looking Interferometer 

GBIF Global Biodiversity Information Facility 

GCOS Global Climate Observing Systems  

GEO Group on Earth Observations  

GEO Global Environment Outlook 

GEO Group on Earth Observations 

GEOSS Global Earth Observation System of Systems 

GER/DAIS Geophysical and Environmental Research/Digital Airborne Imaging Spectrometer 

GFZ German Research Centre for Geosciences 

GLP Global Land Project 

GOOS Global Ocean Observing System 

GS Ground Segment 

GTOS Global Terrestrial Observing System  

GUI Graphical User Interface 

HICO Hyperspectral Imager for the Coastal Ocean 

HISUI Hyperspectral Imager Suite 

HRS Hyperspectral Remote Sensing 

HUB Humboldt-Universität zu Berlin 

HYPXIM HYPerspectral-X Imager 

HZG Helmholtz-Zentrum Geesthacht 

IGBP International Geosphere-Biosphere Program  

IHDP International Human Dimensions Program  
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IMEO International Methane Emissions Observatory 

IPBES Intergovernmental Platform on Biodiversity & Ecosystem Services 

IPCC Intergovernmental Panel on Climate Change 

IRS Infrared Sounder 

ISS International Space Station 

IUNC International Union for the Conservation of Nature 

JAXA Japan Aerospace Exploration Agency 

LAI Leaf Area Index 

LAP Light-Absorbing Particles 

LCZ Local Climate Zone 

LMA Leaf Mass per Area 

LMU Ludwig-Maximilians-Universität München 

LOICZ Land Ocean Interaction in the Coastal Zone Program 

LUCAS Land Use/Cover Area frame statistical Survey 

MERIS MEdium Resolution Imaging Spectrometer 

MIVIS Multispectral Infrared Visible Imaging Spectromete 

ML Machine learning 

MOOC Massive Open Online Course 

MSFD Marine Strategy Framework Directive 

NASA National Aeronautics and Space Administration 

NIR Near Infrared 

OGC Open Geospatial Consortium 

OHB SE Otto Hydraulic Bremen Societas Europaea 

PCB Polychlorinated Biphenyl 

PICS Pseudo Invariant Calibration Sites 

PRISMA PRescursore IperSpettrale della Missione Operative 

PVP Product Validation Plant 

RadCalNet Radiometric Calibration Network 

REDD UN Collaborative Initiative on Reducing Emissions from Deforestation and Forest 

Degradation 

SAR Synthetic Aperture Radar 

SBA Societal Benefit Area 

SBG PACE Surface Biology and Geology - Plankton, Aerosol, Cloud, ocean Ecosystem 

SDG Sustainable Development Goals 

SFSI SWIR Full Spectrum Imager 

SFTP Secure File Transfer Protocol 

SNR Signal to Noise Ratio 

SPOT HRV Satellite Pour l'Observation de la Terre - High Resolution Visible 

SSL Soil Spectral Library 

SWIR Shortwave Infrared 

SZA Solar Zenith Angle 
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TIR Thermal Infrared 

UB University of Bonn 

UNCCD United Nations Convention on Combating Desertification 

UNEP United Nations Environment Programme 

UNESCO United Nations Eductaional, Scientific and Cultural Organization 

UNFCCC United Nations Framework Convention on Climate Change 

UT University of Trier 

VIIRS Visible Infrared Imaging Radiometer Suite 

VIS Visible 

V-I-S Vegetation – Impervious surface - Soil 

VNIR Visibe-Near Infrared 

VZA Viewing Zenith Angle 

WCRP World Climate Research Programme 

WMO World Meteorlogical Organization 
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